wiklif's picture
next update requirements.txt
65f60ce
import gradio as gr
import os
from train_model import train
from predict_model import predict_all
os.environ['NUMPY_EXPERIMENTAL_ARRAY_FUNCTION'] = '0'
def train_model():
train()
return "Model trained and saved as animal_classifier_resnet.pth"
def download_model():
return "animal_classifier_resnet.pth"
def run_predictions():
results = predict_all()
return "\n".join(results)
with gr.Blocks() as demo:
gr.Markdown("# Animal Classifier Model")
with gr.Tab("Train"):
train_button = gr.Button("Train Model")
train_output = gr.Textbox()
train_button.click(train_model, outputs=train_output)
with gr.Tab("Predict"):
predict_button = gr.Button("Run Predictions")
predict_output = gr.Textbox()
predict_button.click(run_predictions, outputs=predict_output)
with gr.Tab("Download"):
gr.Markdown("## Download Trained Model")
download_button = gr.Button("Download Model")
download_button.click(download_model, outputs=gr.File())
if __name__ == "__main__":
demo.launch()