inclusive-ml commited on
Commit
5d3cb4b
·
1 Parent(s): 83b1896

initial commit

Browse files
Files changed (2) hide show
  1. app.py +153 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from functools import partial
3
+ from typing import Callable, List, Optional
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ import streamlit as st
8
+ import umap
9
+ from bokeh.models import ColumnDataSource, HoverTool
10
+ from bokeh.palettes import Cividis256 as Pallete
11
+ from bokeh.plotting import Figure, figure
12
+ from bokeh.transform import factor_cmap
13
+ from datasets import load_dataset
14
+ from sentence_transformers import SentenceTransformer
15
+ from sklearn.manifold import TSNE
16
+
17
+ logging.basicConfig(level=logging.INFO)
18
+ logger = logging.getLogger(__name__)
19
+ EMBEDDING_MODELS = ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2", "flax-sentence-embeddings/all_datasets_v3_mpnet-base"]
20
+ DIMENSIONALITY_REDUCTION_ALGORITHMS = ["UMAP", "t-SNE"]
21
+ SEED = 0
22
+
23
+
24
+ @st.cache(show_spinner=False, allow_output_mutation=True)
25
+ def load_model(model_name: str) -> SentenceTransformer:
26
+ embedder = model_name
27
+ return SentenceTransformer(embedder)
28
+
29
+
30
+ def embed_text(text: List[str], model: SentenceTransformer) -> np.ndarray:
31
+ return model.encode(text)
32
+
33
+
34
+ def encode_labels(labels: pd.Series) -> pd.Series:
35
+ if pd.api.types.is_numeric_dtype(labels):
36
+ return labels
37
+ return labels.astype("category").cat.codes
38
+
39
+
40
+ def get_tsne_embeddings(
41
+ embeddings: np.ndarray, perplexity: int = 30, n_components: int = 2, init: str = "pca", n_iter: int = 5000, random_state: int = SEED
42
+ ) -> np.ndarray:
43
+ tsne = TSNE(perplexity=perplexity, n_components=n_components, init=init, n_iter=n_iter, random_state=random_state)
44
+ return tsne.fit_transform(embeddings)
45
+
46
+
47
+ def get_umap_embeddings(embeddings: np.ndarray) -> np.ndarray:
48
+ umap_model = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=SEED)
49
+ return umap_model.fit_transform(embeddings)
50
+
51
+
52
+ def draw_interactive_scatter_plot(
53
+ texts: np.ndarray, xs: np.ndarray, ys: np.ndarray, values: np.ndarray, labels: np.ndarray, text_column: str, label_column: str
54
+ ) -> Figure:
55
+ # Normalize values to range between 0-255, to assign a color for each value
56
+ max_value = values.max()
57
+ min_value = values.min()
58
+ if max_value - min_value == 0:
59
+ values_color = np.ones(len(values))
60
+ else:
61
+ values_color = ((values - min_value) / (max_value - min_value) * 255).round().astype(int).astype(str)
62
+ values_color_set = sorted(values_color)
63
+
64
+ values_list = values.astype(str).tolist()
65
+ values_set = sorted(values_list)
66
+ labels_list = labels.astype(str).tolist()
67
+
68
+ source = ColumnDataSource(data=dict(x=xs, y=ys, text=texts, label=values_list, original_label=labels_list))
69
+ hover = HoverTool(tooltips=[(text_column, "@text{safe}"), (label_column, "@original_label")])
70
+ p = figure(plot_width=800, plot_height=800, tools=[hover])
71
+ p.circle("x", "y", size=10, source=source, fill_color=factor_cmap("label", palette=[Pallete[int(id_)] for id_ in values_color_set], factors=values_set))
72
+
73
+ p.axis.visible = False
74
+ p.xgrid.grid_line_color = None
75
+ p.ygrid.grid_line_color = None
76
+ p.toolbar.logo = None
77
+ return p
78
+
79
+
80
+ def uploaded_file_to_dataframe(uploaded_file: st.uploaded_file_manager.UploadedFile) -> pd.DataFrame:
81
+ extension = uploaded_file.name.split(".")[-1]
82
+ return pd.read_csv(uploaded_file, sep="\t" if extension == "tsv" else ",")
83
+
84
+
85
+ def hub_dataset_to_dataframe(path: str, name: str, split: str, sample: int) -> pd.DataFrame:
86
+ load_dataset_fn = partial(load_dataset, path=path)
87
+ if name:
88
+ load_dataset_fn = partial(load_dataset_fn, name=name)
89
+ if split:
90
+ load_dataset_fn = partial(load_dataset_fn, split=split)
91
+ dataset = load_dataset_fn().shuffle(seed=SEED)[:sample]
92
+ return pd.DataFrame(dataset)
93
+
94
+
95
+ def generate_plot(
96
+ df: pd.DataFrame,
97
+ text_column: str,
98
+ label_column: str,
99
+ sample: Optional[int],
100
+ dimensionality_reduction_function: Callable,
101
+ model: SentenceTransformer,
102
+ ) -> Figure:
103
+ if text_column not in df.columns:
104
+ raise ValueError(f"The specified column name doesn't exist. Columns available: {df.columns.values}")
105
+ if label_column not in df.columns:
106
+ df[label_column] = 0
107
+ df = df.dropna(subset=[text_column, label_column])
108
+ if sample:
109
+ df = df.sample(min(sample, df.shape[0]), random_state=SEED)
110
+ with st.spinner(text="Embedding text..."):
111
+ embeddings = embed_text(df[text_column].values.tolist(), model)
112
+ logger.info("Encoding labels")
113
+ encoded_labels = encode_labels(df[label_column])
114
+ with st.spinner("Reducing dimensionality..."):
115
+ embeddings_2d = dimensionality_reduction_function(embeddings)
116
+ logger.info("Generating figure")
117
+ plot = draw_interactive_scatter_plot(
118
+ df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column
119
+ )
120
+ return plot
121
+
122
+
123
+ st.title("Embedding Lenses")
124
+ st.write("Visualize text embeddings in 2D using colors for continuous or categorical labels.")
125
+ uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"])
126
+ st.write("Alternatively, select a dataset from the [hub](https://huggingface.co/datasets)")
127
+ col1, col2, col3 = st.columns(3)
128
+ with col1:
129
+ hub_dataset = st.text_input("Dataset name", "ag_news")
130
+ with col2:
131
+ hub_dataset_config = st.text_input("Dataset configuration", "")
132
+ with col3:
133
+ hub_dataset_split = st.text_input("Dataset split", "train")
134
+
135
+ text_column = st.text_input("Text column name", "text")
136
+ label_column = st.text_input("Numerical/categorical column name (ignore if not applicable)", "label")
137
+ sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
138
+ dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0)
139
+ model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0)
140
+ with st.spinner(text="Loading model..."):
141
+ model = load_model(model_name)
142
+ dimensionality_reduction_function = get_umap_embeddings if dimensionality_reduction == "UMAP" else get_tsne_embeddings
143
+
144
+ if uploaded_file or hub_dataset:
145
+ with st.spinner("Loading dataset..."):
146
+ if uploaded_file:
147
+ df = uploaded_file_to_dataframe(uploaded_file)
148
+ else:
149
+ df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample)
150
+ plot = generate_plot(df, text_column, label_column, sample, dimensionality_reduction_function, model)
151
+ logger.info("Displaying plot")
152
+ st.bokeh_chart(plot)
153
+ logger.info("Done")
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ huggingface-hub==0.0.17
2
+ streamlit==0.84.1
3
+ transformers==4.11.3
4
+ watchdog==2.1.3
5
+ sentence-transformers==2.0.0
6
+ bokeh==2.2.2
7
+ umap-learn==0.5.1
8
+ numpy==1.20.0