wickedreg's picture
Update app.py
95668d2 verified
raw
history blame
3.31 kB
import numpy as np
import pandas as pd
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import json
import cv2
from ultralytics import YOLO
# ======================= МОДЕЛЬ ===================================
model = YOLO("yolov11m_best.pt")
# ================== ЧТЕНИЕ НАЗВАНИЙ И ЦЕН =======================
with open('Fruit_Veggies_Price.json', 'r', encoding='utf-8') as file:
fruits_data = json.load(file)
# ===================== ДЕТЕКЦИЯ ПЛОДА ============================
def detect_fruit(image):
# считываем изображение
# предполагается, что image - это объект PIL Image
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# детекция
detections = model.predict(source=image_cv, conf=0.5)
# проверка на наличие детекций
if len(detections[0].boxes.cls) == 0:
return image_cv, None
result_np_image = detections[0].plot()
result_np_image = cv2.cvtColor(result_np_image, cv2.COLOR_BGR2RGB)
detected_fruit = model.names[int(detections[0].boxes.cls[0])]
return result_np_image, detected_fruit
# =========================== ЧЕК ================================
def create_receipt(detected_fruit, weight):
data = fruits_data[detected_fruit]
fruit_name = data['name']
price = data['price_per_kg']
total_price = round(price * weight, 2)
receipt_img = Image.new("RGB", (300, 200), color="white")
draw = ImageDraw.Draw(receipt_img)
try:
font = ImageFont.truetype("DejaVuSans.ttf", 18)
except IOError:
font = ImageFont.load_default()
draw.text((10, 10), "Чек", fill="black", font=font)
draw.text((10, 50), f"Продукт: {fruit_name}", fill="black", font=font)
draw.text((10, 80), f"Вес: {weight} кг", fill="black", font=font)
draw.text((10, 110), f"Цена за кг: {price} руб.", fill="black", font=font)
draw.text((10, 140), f"Сумма: {total_price} руб.", fill="black", font=font)
return receipt_img
# ======================= ИНТЕРФЕЙС ===============================
def gradio_interface(image, weight):
if weight <= 0:
gr.Info('Укажите вес товара')
return None, None
result_np_image, detected_fruit = detect_fruit(image)
if detected_fruit == None:
gr.Info('Не удалось определить товар')
return None, None
receipt = create_receipt(detected_fruit, weight)
return result_np_image, receipt
image_input = gr.Image(
label="Изображение",
width=640,
height=380
)
weight_input = gr.Number(label="Вес (кг)")
image_output = gr.Image(
label="Распознанный товар",
type="numpy",
width=640,
height=380
)
receipt_output = gr.Image(
label="Чек",
type="pil",
width=400,
height=400
)
gr.Interface(
fn=gradio_interface,
inputs=[image_input, weight_input],
outputs=[image_output, receipt_output],
title="Определение товара и создание чека",
description="Загрузите изображение, введите вес и получите чек"
).launch()