Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -126,12 +126,24 @@ def plot_confusion_matrix(y_true, y_pred, title):
|
|
126 |
plt.xlabel('Predicted')
|
127 |
plt.ylabel('Actual')
|
128 |
plt.colorbar()
|
|
|
|
|
129 |
plt.xticks([0, 1], labels=[0, 1])
|
130 |
plt.yticks([0, 1], labels=[0, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
plt.tight_layout()
|
132 |
plt.savefig(f"{title}.png")
|
133 |
return Image.open(f"{title}.png")
|
134 |
|
|
|
135 |
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
|
136 |
N = output_emb.shape[0] # Get the total number of samples
|
137 |
|
@@ -233,8 +245,8 @@ def process_hdf5_file(uploaded_file, percentage_idx):
|
|
233 |
print(f'test_data_emb: {test_data_emb.shape}')
|
234 |
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
235 |
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
236 |
-
print(f'pred_emb: {pred_emb}')
|
237 |
-
print(f'actual labels: {test_labels}')
|
238 |
# Step 9: Generate confusion matrices for both raw and embeddings
|
239 |
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
240 |
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|
|
|
126 |
plt.xlabel('Predicted')
|
127 |
plt.ylabel('Actual')
|
128 |
plt.colorbar()
|
129 |
+
|
130 |
+
# Add labels for x and y ticks (Actual/Predicted class labels)
|
131 |
plt.xticks([0, 1], labels=[0, 1])
|
132 |
plt.yticks([0, 1], labels=[0, 1])
|
133 |
+
|
134 |
+
# Annotate the confusion matrix
|
135 |
+
thresh = cm.max() / 2 # Define threshold to choose text color (black or white)
|
136 |
+
for i in range(cm.shape[0]):
|
137 |
+
for j in range(cm.shape[1]):
|
138 |
+
plt.text(j, i, format(cm[i, j], 'd'),
|
139 |
+
ha="center", va="center",
|
140 |
+
color="white" if cm[i, j] > thresh else "black")
|
141 |
+
|
142 |
plt.tight_layout()
|
143 |
plt.savefig(f"{title}.png")
|
144 |
return Image.open(f"{title}.png")
|
145 |
|
146 |
+
|
147 |
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
|
148 |
N = output_emb.shape[0] # Get the total number of samples
|
149 |
|
|
|
245 |
print(f'test_data_emb: {test_data_emb.shape}')
|
246 |
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
247 |
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
248 |
+
#print(f'pred_emb: {pred_emb}')
|
249 |
+
#print(f'actual labels: {test_labels}')
|
250 |
# Step 9: Generate confusion matrices for both raw and embeddings
|
251 |
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
252 |
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|