Sadjad Alikhani commited on
Commit
9e4473c
·
verified ·
1 Parent(s): 97890e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -16,7 +16,7 @@ RAW_PATH = os.path.join("images", "raw")
16
  EMBEDDINGS_PATH = os.path.join("images", "embeddings")
17
 
18
  # Specific values for percentage of data for training
19
- percentage_values = np.arange(9) + 1
20
 
21
  # Custom class to capture print output
22
  class PrintCapture(io.StringIO):
@@ -139,7 +139,7 @@ def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
139
  indices = torch.randperm(N) # Randomly shuffle the indices
140
 
141
  # Calculate the split index
142
- split_index = int(N * percentage_values[percentage_idx-1]/10)
143
  print(f'Training Size: {split_index}')
144
 
145
  # Split indices into train and test
@@ -221,7 +221,7 @@ def process_hdf5_file(uploaded_file, percentage_idx):
221
  print(f"Output Raw Shape: {output_raw.shape}")
222
 
223
  print(f'percentage_idx: {percentage_idx}')
224
- print(f'percentage_value: {percentage_values[percentage_idx-1]*10}')
225
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
226
  output_raw.view(len(output_raw),-1),
227
  labels,
@@ -299,8 +299,8 @@ with gr.Blocks(css="""
299
  with gr.Column(elem_id="slider-container"):
300
  gr.Markdown("Percentage of Data for Training")
301
  #percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
302
- percentage_dropdown_los = gr.Dropdown(choices=[str(v) for v in percentage_values*10],
303
- value=10,
304
  label="Percentage of Data for Training",
305
  interactive=True)
306
 
 
16
  EMBEDDINGS_PATH = os.path.join("images", "embeddings")
17
 
18
  # Specific values for percentage of data for training
19
+ percentage_values = (np.arange(9) + 1)*100
20
 
21
  # Custom class to capture print output
22
  class PrintCapture(io.StringIO):
 
139
  indices = torch.randperm(N) # Randomly shuffle the indices
140
 
141
  # Calculate the split index
142
+ split_index = int(N * percentage_values[percentage_idx]/100)
143
  print(f'Training Size: {split_index}')
144
 
145
  # Split indices into train and test
 
221
  print(f"Output Raw Shape: {output_raw.shape}")
222
 
223
  print(f'percentage_idx: {percentage_idx}')
224
+ print(f'percentage_value: {percentage_values[percentage_idx]}')
225
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
226
  output_raw.view(len(output_raw),-1),
227
  labels,
 
299
  with gr.Column(elem_id="slider-container"):
300
  gr.Markdown("Percentage of Data for Training")
301
  #percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
302
+ percentage_dropdown_los = gr.Dropdown(choices=[0, 1, 2, 3, 4, 5, 6, 7, 8]
303
+ value=5,
304
  label="Percentage of Data for Training",
305
  interactive=True)
306