Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,9 @@ import matplotlib.pyplot as plt
|
|
15 |
RAW_PATH = os.path.join("images", "raw")
|
16 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
17 |
|
18 |
-
# Specific values for percentage of data for training
|
19 |
percentage_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
|
|
|
20 |
|
21 |
# Custom class to capture print output
|
22 |
class PrintCapture(io.StringIO):
|
@@ -32,30 +33,18 @@ class PrintCapture(io.StringIO):
|
|
32 |
return ''.join(self.output)
|
33 |
|
34 |
# Function to load and display predefined images based on user selection
|
35 |
-
def display_predefined_images(percentage_idx):
|
36 |
percentage = percentage_values[percentage_idx]
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
raw_image = Image.open(raw_image_path)
|
41 |
embeddings_image = Image.open(embeddings_image_path)
|
42 |
|
43 |
return raw_image, embeddings_image
|
44 |
|
45 |
-
# Function to create random images for LoS/NLoS classification results
|
46 |
-
def create_random_image(size=(300, 300)):
|
47 |
-
random_image = np.random.rand(*size, 3) * 255
|
48 |
-
return Image.fromarray(random_image.astype('uint8'))
|
49 |
-
|
50 |
-
# Function to load the pre-trained model from your cloned repository
|
51 |
-
def load_custom_model():
|
52 |
-
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
|
53 |
-
model = LWM() # Modify this according to your model initialization
|
54 |
-
model.eval()
|
55 |
-
return model
|
56 |
-
|
57 |
-
import importlib.util
|
58 |
-
|
59 |
# Function to dynamically load a Python module from a given file path
|
60 |
def load_module_from_path(module_name, file_path):
|
61 |
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
@@ -80,25 +69,18 @@ def split_dataset(channels, labels, percentage_idx):
|
|
80 |
|
81 |
return train_data, test_data, train_labels, test_labels
|
82 |
|
83 |
-
# Function to
|
84 |
-
def euclidean_distance(x, centroid):
|
85 |
-
return np.linalg.norm(x - centroid)
|
86 |
-
|
87 |
-
import torch
|
88 |
-
|
89 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
90 |
-
|
91 |
-
|
92 |
-
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
|
93 |
|
94 |
predictions = []
|
95 |
for test_point in test_data:
|
96 |
-
|
97 |
-
|
98 |
-
dist_1 = euclidean_distance(test_point, centroid_1)
|
99 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
100 |
|
101 |
-
return torch.tensor(predictions)
|
102 |
|
103 |
# Function to generate confusion matrix plot
|
104 |
def plot_confusion_matrix(y_true, y_pred, title):
|
@@ -115,34 +97,10 @@ def plot_confusion_matrix(y_true, y_pred, title):
|
|
115 |
plt.savefig(f"{title}.png")
|
116 |
return Image.open(f"{title}.png")
|
117 |
|
118 |
-
def identical_train_test_split(output_emb, output_raw, labels, percentage):
|
119 |
-
N = output_emb.shape[0] # Get the total number of samples
|
120 |
-
|
121 |
-
# Generate the indices for shuffling and splitting
|
122 |
-
indices = torch.randperm(N) # Randomly shuffle the indices
|
123 |
-
|
124 |
-
# Calculate the split index
|
125 |
-
split_index = int(N * percentage)
|
126 |
-
|
127 |
-
# Split indices into train and test
|
128 |
-
train_indices = indices[:split_index] # First 80% for training
|
129 |
-
test_indices = indices[split_index:] # Remaining 20% for testing
|
130 |
-
|
131 |
-
# Select the same indices from both output_emb and output_raw
|
132 |
-
train_emb = output_emb[train_indices]
|
133 |
-
test_emb = output_emb[test_indices]
|
134 |
-
|
135 |
-
train_raw = output_raw[train_indices]
|
136 |
-
test_raw = output_raw[test_indices]
|
137 |
-
|
138 |
-
train_labels = labels[train_indices]
|
139 |
-
test_labels = labels[test_indices]
|
140 |
-
|
141 |
-
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
|
142 |
-
|
143 |
# Store the original working directory when the app starts
|
144 |
original_dir = os.getcwd()
|
145 |
|
|
|
146 |
def process_hdf5_file(uploaded_file, percentage_idx):
|
147 |
capture = PrintCapture()
|
148 |
sys.stdout = capture # Redirect print statements to capture
|
@@ -153,76 +111,45 @@ def process_hdf5_file(uploaded_file, percentage_idx):
|
|
153 |
|
154 |
# Step 1: Clone the repository if not already done
|
155 |
if not os.path.exists(model_repo_dir):
|
156 |
-
print(f"Cloning model repository from {model_repo_url}...")
|
157 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
158 |
|
159 |
-
# Step 2:
|
160 |
repo_work_dir = os.path.join(original_dir, model_repo_dir)
|
161 |
if os.path.exists(repo_work_dir):
|
162 |
-
os.chdir(repo_work_dir)
|
163 |
-
print(f"Changed working directory to {os.getcwd()}")
|
164 |
-
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
|
165 |
else:
|
166 |
print(f"Directory {repo_work_dir} does not exist.")
|
167 |
return
|
168 |
-
|
169 |
-
#
|
170 |
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
171 |
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
172 |
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
173 |
|
174 |
-
# Load lwm_model
|
175 |
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
176 |
-
|
177 |
-
# Load input_preprocess
|
178 |
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
179 |
-
|
180 |
-
# Load inference
|
181 |
inference = load_module_from_path("inference", inference_path)
|
182 |
|
183 |
-
# Step 4: Load the model from lwm_model module
|
184 |
device = 'cpu'
|
185 |
-
print(f"Loading the LWM model on {device}...")
|
186 |
model = lwm_model.LWM.from_pretrained(device=device)
|
187 |
|
188 |
-
# Step 5: Load the HDF5 file and extract the channels and labels
|
189 |
with h5py.File(uploaded_file.name, 'r') as f:
|
190 |
-
channels = np.array(f['channels'])
|
191 |
-
labels = np.array(f['labels'])
|
192 |
-
print(f"Loaded dataset with {channels.shape[0]} samples.")
|
193 |
|
194 |
-
# Step 7: Tokenize the data using the tokenizer from input_preprocess
|
195 |
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
|
196 |
|
197 |
-
# Step 7: Perform inference using the functions from inference.py
|
198 |
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
199 |
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
200 |
|
201 |
-
|
202 |
-
print(f"Output Raw Shape: {output_raw.shape}")
|
203 |
-
|
204 |
-
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
|
205 |
-
output_raw.view(len(output_raw),-1),
|
206 |
-
labels,
|
207 |
-
percentage_idx)
|
208 |
-
|
209 |
-
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
|
210 |
-
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
211 |
-
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
212 |
-
|
213 |
-
# Step 9: Generate confusion matrices for both raw and embeddings
|
214 |
-
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
215 |
-
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|
216 |
-
|
217 |
-
return raw_cm_image, emb_cm_image, capture.get_output()
|
218 |
|
219 |
except Exception as e:
|
220 |
return str(e), str(e), capture.get_output()
|
221 |
|
222 |
finally:
|
223 |
-
# Always return to the original working directory after processing
|
224 |
os.chdir(original_dir)
|
225 |
-
sys.stdout = sys.__stdout__
|
226 |
|
227 |
# Function to handle logic based on whether a file is uploaded or not
|
228 |
def los_nlos_classification(file, percentage_idx):
|
@@ -231,18 +158,19 @@ def los_nlos_classification(file, percentage_idx):
|
|
231 |
else:
|
232 |
return display_predefined_images(percentage_idx), None
|
233 |
|
234 |
-
# Define the Gradio interface
|
235 |
with gr.Blocks(css="""
|
236 |
-
.vertical-slider input[type=range] {
|
237 |
-
writing-mode: bt-lr; /* IE */
|
238 |
-
-webkit-appearance: slider-vertical; /* WebKit */
|
239 |
-
width: 8px;
|
240 |
-
height: 200px;
|
241 |
-
}
|
242 |
.slider-container {
|
243 |
-
display: inline-block;
|
244 |
-
margin-right: 50px;
|
245 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
}
|
247 |
""") as demo:
|
248 |
|
@@ -265,13 +193,17 @@ with gr.Blocks(css="""
|
|
265 |
with gr.Row():
|
266 |
with gr.Column(elem_id="slider-container"):
|
267 |
gr.Markdown("Percentage of Data for Training")
|
268 |
-
percentage_slider_bp = gr.Slider(minimum=0, maximum=
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
273 |
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
with gr.Tab("LoS/NLoS Classification Task"):
|
277 |
gr.Markdown("### LoS/NLoS Classification Task")
|
@@ -281,12 +213,12 @@ with gr.Blocks(css="""
|
|
281 |
with gr.Row():
|
282 |
with gr.Column(elem_id="slider-container"):
|
283 |
gr.Markdown("Percentage of Data for Training")
|
284 |
-
percentage_slider_los = gr.Slider(minimum=0, maximum=
|
285 |
|
286 |
-
with gr.Row():
|
287 |
-
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300
|
288 |
-
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300
|
289 |
-
output_textbox = gr.Textbox(label="Console Output", lines=
|
290 |
|
291 |
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
292 |
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
|
|
15 |
RAW_PATH = os.path.join("images", "raw")
|
16 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
17 |
|
18 |
+
# Specific values for percentage of data for training and task complexity
|
19 |
percentage_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
|
20 |
+
complexity_values = [16, 32, 64, 128, 256] # Task complexity values
|
21 |
|
22 |
# Custom class to capture print output
|
23 |
class PrintCapture(io.StringIO):
|
|
|
33 |
return ''.join(self.output)
|
34 |
|
35 |
# Function to load and display predefined images based on user selection
|
36 |
+
def display_predefined_images(percentage_idx, complexity_idx):
|
37 |
percentage = percentage_values[percentage_idx]
|
38 |
+
complexity = complexity_values[complexity_idx]
|
39 |
+
|
40 |
+
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
41 |
+
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
42 |
|
43 |
raw_image = Image.open(raw_image_path)
|
44 |
embeddings_image = Image.open(embeddings_image_path)
|
45 |
|
46 |
return raw_image, embeddings_image
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Function to dynamically load a Python module from a given file path
|
49 |
def load_module_from_path(module_name, file_path):
|
50 |
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
|
|
69 |
|
70 |
return train_data, test_data, train_labels, test_labels
|
71 |
|
72 |
+
# Function to classify based on distance to class centroids
|
|
|
|
|
|
|
|
|
|
|
73 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
74 |
+
centroid_0 = train_data[train_labels == 0].mean(dim=0)
|
75 |
+
centroid_1 = train_data[train_labels == 1].mean(dim=0)
|
|
|
76 |
|
77 |
predictions = []
|
78 |
for test_point in test_data:
|
79 |
+
dist_0 = torch.norm(test_point - centroid_0)
|
80 |
+
dist_1 = torch.norm(test_point - centroid_1)
|
|
|
81 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
82 |
|
83 |
+
return torch.tensor(predictions)
|
84 |
|
85 |
# Function to generate confusion matrix plot
|
86 |
def plot_confusion_matrix(y_true, y_pred, title):
|
|
|
97 |
plt.savefig(f"{title}.png")
|
98 |
return Image.open(f"{title}.png")
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Store the original working directory when the app starts
|
101 |
original_dir = os.getcwd()
|
102 |
|
103 |
+
# Function to process the uploaded HDF5 file for LoS/NLoS classification
|
104 |
def process_hdf5_file(uploaded_file, percentage_idx):
|
105 |
capture = PrintCapture()
|
106 |
sys.stdout = capture # Redirect print statements to capture
|
|
|
111 |
|
112 |
# Step 1: Clone the repository if not already done
|
113 |
if not os.path.exists(model_repo_dir):
|
|
|
114 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
115 |
|
116 |
+
# Step 2: Change working directory
|
117 |
repo_work_dir = os.path.join(original_dir, model_repo_dir)
|
118 |
if os.path.exists(repo_work_dir):
|
119 |
+
os.chdir(repo_work_dir)
|
|
|
|
|
120 |
else:
|
121 |
print(f"Directory {repo_work_dir} does not exist.")
|
122 |
return
|
123 |
+
|
124 |
+
# Dynamically load the necessary modules
|
125 |
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
126 |
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
127 |
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
128 |
|
|
|
129 |
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
|
|
|
|
130 |
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
|
|
|
|
131 |
inference = load_module_from_path("inference", inference_path)
|
132 |
|
|
|
133 |
device = 'cpu'
|
|
|
134 |
model = lwm_model.LWM.from_pretrained(device=device)
|
135 |
|
|
|
136 |
with h5py.File(uploaded_file.name, 'r') as f:
|
137 |
+
channels = np.array(f['channels'])
|
138 |
+
labels = np.array(f['labels'])
|
|
|
139 |
|
|
|
140 |
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
|
141 |
|
|
|
142 |
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
143 |
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
144 |
|
145 |
+
return output_emb, output_raw, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
except Exception as e:
|
148 |
return str(e), str(e), capture.get_output()
|
149 |
|
150 |
finally:
|
|
|
151 |
os.chdir(original_dir)
|
152 |
+
sys.stdout = sys.__stdout__
|
153 |
|
154 |
# Function to handle logic based on whether a file is uploaded or not
|
155 |
def los_nlos_classification(file, percentage_idx):
|
|
|
158 |
else:
|
159 |
return display_predefined_images(percentage_idx), None
|
160 |
|
161 |
+
# Define the Gradio interface with thinner sliders
|
162 |
with gr.Blocks(css="""
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
.slider-container {
|
|
|
|
|
164 |
text-align: center;
|
165 |
+
margin-bottom: 20px;
|
166 |
+
}
|
167 |
+
.image-row {
|
168 |
+
justify-content: center;
|
169 |
+
margin-top: 10px;
|
170 |
+
}
|
171 |
+
input[type=range] {
|
172 |
+
width: 180px;
|
173 |
+
height: 8px;
|
174 |
}
|
175 |
""") as demo:
|
176 |
|
|
|
193 |
with gr.Row():
|
194 |
with gr.Column(elem_id="slider-container"):
|
195 |
gr.Markdown("Percentage of Data for Training")
|
196 |
+
percentage_slider_bp = gr.Slider(minimum=0, maximum=9, step=1, value=0, label="Training Data (%)", interactive=True)
|
197 |
+
with gr.Column(elem_id="slider-container"):
|
198 |
+
gr.Markdown("Task Complexity")
|
199 |
+
complexity_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Task Complexity", interactive=True)
|
|
|
200 |
|
201 |
+
with gr.Row(elem_id="image-row"):
|
202 |
+
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
|
203 |
+
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300)
|
204 |
+
|
205 |
+
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
206 |
+
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
207 |
|
208 |
with gr.Tab("LoS/NLoS Classification Task"):
|
209 |
gr.Markdown("### LoS/NLoS Classification Task")
|
|
|
213 |
with gr.Row():
|
214 |
with gr.Column(elem_id="slider-container"):
|
215 |
gr.Markdown("Percentage of Data for Training")
|
216 |
+
percentage_slider_los = gr.Slider(minimum=0, maximum=9, step=1, value=0, label="Training Data (%)", interactive=True)
|
217 |
|
218 |
+
with gr.Row(elem_id="image-row"):
|
219 |
+
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
|
220 |
+
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
|
221 |
+
output_textbox = gr.Textbox(label="Console Output", lines=8, elem_classes="output-box")
|
222 |
|
223 |
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
224 |
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|