Sadjad Alikhani commited on
Commit
22c7dd7
·
verified ·
1 Parent(s): ef6f553

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -21
app.py CHANGED
@@ -31,25 +31,6 @@ class PrintCapture(io.StringIO):
31
  def get_output(self):
32
  return ''.join(self.output)
33
 
34
- # Function to load and display predefined images based on user selection
35
- def display_predefined_images(percentage_idx):
36
- percentage = percentage_values[percentage_idx]
37
- raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
38
- embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
39
-
40
- # Check if the images exist
41
- if os.path.exists(raw_image_path):
42
- raw_image = Image.open(raw_image_path)
43
- else:
44
- raw_image = create_random_image() # Use a fallback random image
45
-
46
- if os.path.exists(embeddings_image_path):
47
- embeddings_image = Image.open(embeddings_image_path)
48
- else:
49
- embeddings_image = create_random_image() # Use a fallback random image
50
-
51
- return raw_image, embeddings_image
52
-
53
  # Function to create random images for LoS/NLoS classification results
54
  def create_random_image(size=(300, 300)):
55
  random_image = np.random.rand(*size, 3) * 255
@@ -161,7 +142,8 @@ def run_inference(uploaded_file):
161
  sys.stdout = sys.__stdout__ # Reset print statements
162
 
163
  # Function to handle classification after inference (using Gradio state)
164
- def los_nlos_classification(output_emb, output_raw, labels, percentage_idx):
 
165
  if output_emb is not None and output_raw is not None:
166
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
167
  output_emb.view(len(output_emb), -1),
@@ -221,7 +203,7 @@ with gr.Blocks(css="""
221
  # Handle dropdown change for classification
222
  percentage_dropdown_los.change(
223
  fn=los_nlos_classification,
224
- inputs=[inference_output['output_emb'], inference_output['output_raw'], inference_output['labels'], percentage_dropdown_los],
225
  outputs=[raw_img_los, embeddings_img_los, output_textbox]
226
  )
227
 
 
31
  def get_output(self):
32
  return ''.join(self.output)
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  # Function to create random images for LoS/NLoS classification results
35
  def create_random_image(size=(300, 300)):
36
  random_image = np.random.rand(*size, 3) * 255
 
142
  sys.stdout = sys.__stdout__ # Reset print statements
143
 
144
  # Function to handle classification after inference (using Gradio state)
145
+ def los_nlos_classification(inference_output, percentage_idx):
146
+ output_emb, output_raw, labels = inference_output
147
  if output_emb is not None and output_raw is not None:
148
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
149
  output_emb.view(len(output_emb), -1),
 
203
  # Handle dropdown change for classification
204
  percentage_dropdown_los.change(
205
  fn=los_nlos_classification,
206
+ inputs=[inference_output, percentage_dropdown_los],
207
  outputs=[raw_img_los, embeddings_img_los, output_textbox]
208
  )
209