wi-lab's picture
Update app.py
7d97044 verified
raw
history blame
29.5 kB
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import f1_score
import seaborn as sns
#################### BEAM PREDICTION #########################}
def beam_prediction_task(data_percentage, task_complexity, theme='Dark'):
# Folder naming convention based on input_type, data_percentage, and task_complexity
raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"
# Process raw confusion matrix
raw_cm = compute_average_confusion_matrix(raw_folder)
if raw_cm is not None:
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
plot_confusion_matrix_beamPred(raw_cm,
classes=np.arange(raw_cm.shape[0]),
title=f"Raw Confusion Matrix\n{data_percentage}% data, {task_complexity} beams",
save_path=raw_cm_path,
theme=theme)
raw_img = Image.open(raw_cm_path)
else:
raw_img = None
# Process embeddings confusion matrix
embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
if embeddings_cm is not None:
embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
plot_confusion_matrix_beamPred(embeddings_cm,
classes=np.arange(embeddings_cm.shape[0]),
title=f"Embeddings Confusion Matrix\n{data_percentage}% data, {task_complexity} beams",
save_path=embeddings_cm_path,
theme=theme)
embeddings_img = Image.open(embeddings_cm_path)
else:
embeddings_img = None
return raw_img, embeddings_img
# Function to compute the F1-score based on the confusion matrix
def compute_f1_score(cm):
# Compute precision and recall
TP = np.diag(cm)
FP = np.sum(cm, axis=0) - TP
FN = np.sum(cm, axis=1) - TP
precision = TP / (TP + FP)
recall = TP / (TP + FN)
# Handle division by zero in precision or recall
precision = np.nan_to_num(precision)
recall = np.nan_to_num(recall)
# Compute F1 score
f1 = 2 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) # Replace NaN with 0
return np.mean(f1) # Return the mean F1-score across all classes
def plot_confusion_matrix_beamPred(cm, classes, title, save_path, theme='Dark'):
# Compute the average F1-score
avg_f1 = compute_f1_score(cm)
# Choose the color scheme based on the user's mode
if theme == 'Dark':
plt.style.use('dark_background') # Use dark mode styling
#text_color = 'white'
text_color = 'gray'
#cmap = 'cividis' # Dark-mode-friendly colormap
cmap = 'coolwarm'
else:
plt.style.use('default') # Use default (light) mode styling
#text_color = 'black'
text_color = 'gray'
cmap = 'Blues' # Light-mode-friendly colormap
plt.figure(figsize=(10, 10))
# Plot the confusion matrix with a colormap compatible for the mode
g = sns.heatmap(cm, cmap=cmap, cbar=True)
g.axes.get_yticklabels().set_color(text_color)
# Add F1-score to the title
plt.title(f"{title}\nF1 Score: {avg_f1:.3f}", color=text_color, fontsize=23)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
plt.yticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
plt.ylabel('True label', color=text_color, fontsize=20)
plt.xlabel('Predicted label', color=text_color, fontsize=20)
plt.tight_layout()
# Save the plot as an image
plt.savefig(save_path, transparent=True) # Transparent to blend with the site background
plt.close()
# Return the saved image
return Image.open(save_path)
def compute_average_confusion_matrix(folder):
confusion_matrices = []
max_num_labels = 0
# First pass to determine the maximum number of labels
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
num_labels = len(np.unique(data["Target"]))
max_num_labels = max(max_num_labels, num_labels)
# Second pass to calculate the confusion matrices and pad if necessary
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
y_true = data["Target"]
y_pred = data["Top-1 Prediction"]
num_labels = len(np.unique(y_true))
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred, labels=np.arange(max_num_labels))
# If the confusion matrix is smaller, pad it to match the largest size
if cm.shape[0] < max_num_labels:
padded_cm = np.zeros((max_num_labels, max_num_labels))
padded_cm[:cm.shape[0], :cm.shape[1]] = cm
confusion_matrices.append(padded_cm)
else:
confusion_matrices.append(cm)
if confusion_matrices:
avg_cm = np.mean(confusion_matrices, axis=0)
return avg_cm
else:
return None
########################## LOS/NLOS CLASSIFICATION #############################3
# Paths to the predefined images folder
LOS_PATH = "images_LoS"
# Define the percentage values
percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
from sklearn.metrics import f1_score
import seaborn as sns
# Function to compute confusion matrix, F1-score and plot it with dark mode style
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path, light_mode=True):
# Load CSV file
data = pd.read_csv(csv_file_path)
# Extract ground truth and predictions
y_true = data['Target']
y_pred = data['Top-1 Prediction']
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Compute F1-score
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
# Set styling based on light or dark mode
if light_mode:
plt.style.use('default') # Light mode styling
text_color = 'black'
cmap = 'Blues' # Light-mode-friendly colormap
else:
plt.style.use('dark_background') # Dark mode styling
text_color = 'white'
cmap = 'magma' # Dark-mode-friendly colormap
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with the chosen colormap
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)
# Customize tick labels for light/dark mode
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
plt.ylabel('True label', color=text_color, fontsize=12)
plt.xlabel('Predicted label', color=text_color, fontsize=12)
plt.tight_layout()
# Save the plot as an image
plt.savefig(save_path, transparent=True) # Use transparent to blend with the website
plt.close()
# Return the saved image
return Image.open(save_path)
# Function to load confusion matrix based on percentage and input_type
def display_confusion_matrices_los(percentage):
#percentage = percentage_values_los[percentage_idx]
# Construct folder names
raw_folder = os.path.join(LOS_PATH, f"raw_{percentage/100:.3f}_los_noTraining")
embeddings_folder = os.path.join(LOS_PATH, f"embedding_{percentage/100:.3f}_los_noTraining")
# Process raw confusion matrix
raw_csv_file = os.path.join(raw_folder, f"test_predictions_raw_{percentage/100:.3f}_los.csv")
raw_cm_img_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
raw_img = plot_confusion_matrix_from_csv(raw_csv_file,
f"Raw Confusion Matrix ({percentage:.1f}% data)",
raw_cm_img_path)
# Process embeddings confusion matrix
embeddings_csv_file = os.path.join(embeddings_folder, f"test_predictions_embedding_{percentage/100:.3f}_los.csv")
embeddings_cm_img_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
embeddings_img = plot_confusion_matrix_from_csv(embeddings_csv_file,
f"Embeddings Confusion Matrix ({percentage:.1f}% data)",
embeddings_cm_img_path)
return raw_img, embeddings_img
# Main function to handle user choice
def handle_user_choice(choice, percentage=None, uploaded_file=None):
if choice == "Use Default Dataset":
raw_img, embeddings_img = display_confusion_matrices_los(percentage)
return raw_img, embeddings_img, "" # Return empty string for console output
elif choice == "Upload Dataset":
if uploaded_file is not None:
raw_img, embeddings_img, console_output = process_hdf5_file(uploaded_file, percentage)
return raw_img, embeddings_img, console_output
else:
return "Please upload a dataset", "Please upload a dataset", "" # Return empty string for console output
else:
return "Invalid choice", "Invalid choice", "" # Return empty string for console output
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage):
#percentage = percentage_values_los[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
# Check if the images exist
if os.path.exists(raw_image_path):
raw_image = Image.open(raw_image_path)
else:
raw_image = create_random_image() # Use a fallback random image
if os.path.exists(embeddings_image_path):
embeddings_image = Image.open(embeddings_image_path)
else:
embeddings_image = create_random_image() # Use a fallback random image
return raw_image, embeddings_image
def los_nlos_classification(file, percentage):
if file is not None:
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage)
return raw_cm_image, emb_cm_image, console_output # Returning all three: two images and console output
else:
raw_image, embeddings_image = display_predefined_images(percentage)
return raw_image, embeddings_image, "" # Return an empty string for console output when no file is uploaded
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
import importlib.util
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage):
#percentage = percentage_values_los[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage/100)
print(f'Number of Training Samples: {train_size}')
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def euclidean_distance(x, centroid):
return np.linalg.norm(x - centroid)
import torch
def classify_based_on_distance(train_data, train_labels, test_data):
# Compute the centroids for the two classes
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
predictions = []
for test_point in test_data:
# Compute Euclidean distance between the test point and each centroid
dist_0 = euclidean_distance(test_point, centroid_0)
dist_1 = euclidean_distance(test_point, centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
def plot_confusion_matrix(y_true, y_pred, title, light_mode=True):
cm = confusion_matrix(y_true, y_pred)
# Calculate F1 Score
f1 = f1_score(y_true, y_pred, average='weighted')
#plt.style.use('dark_background')
# Set styling based on light or dark mode
if light_mode:
plt.style.use('default') # Light mode styling
text_color = 'black'
cmap = 'Blues' # Light-mode-friendly colormap
else:
plt.style.use('dark_background') # Dark mode styling
text_color = 'white'
cmap = 'magma' # Dark-mode-friendly colormap
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with a dark-mode compatible colormap
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)
# Customize tick labels for dark mode
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
plt.ylabel('True label', color=text_color, fontsize=12)
plt.xlabel('Predicted label', color=text_color, fontsize=12)
plt.tight_layout()
# Save the plot as an image
plt.savefig(f"{title}.png", transparent=True) # Use transparent to blend with the dark mode website
plt.close()
# Return the saved image
return Image.open(f"{title}.png")
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
N = output_emb.shape[0]
indices = torch.randperm(N)
test_split_index = int(N * 0.20)
test_indices = indices[:test_split_index]
remaining_indices = indices[test_split_index:]
train_split_index = int(len(remaining_indices) * train_percentage / 100)
print(f'Training Size: {train_split_index} out of remaining {len(remaining_indices)}')
train_indices = remaining_indices[:train_split_index]
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Store the original working directory when the app starts
original_dir = os.getcwd()
def process_hdf5_file(uploaded_file, percentage):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
model_repo_url = "https://huggingface.co/wi-lab/lwm"
model_repo_dir = "./LWM"
# Step 1: Clone the repository if not already done
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Step 2: Verify the repository was cloned and change the working directory
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir) # Change the working directory only once
print(f"Changed working directory to {os.getcwd()}")
#print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
else:
print(f"Directory {repo_work_dir} does not exist.")
return
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
# Load lwm_model
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
# Load input_preprocess
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
# Load inference
inference = load_module_from_path("inference", inference_path)
# Step 4: Load the model from lwm_model module
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = lwm_model.lwm.from_pretrained(device=device).float()
# Step 5: Load the HDF5 file and extract the channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']).astype(np.complex64)
labels = np.array(f['labels']).astype(np.int32)
print(f"Loaded dataset with {channels.shape[0]} samples.")
# Step 7: Tokenize the data using the tokenizer from input_preprocess
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
# Step 7: Perform inference using the functions from inference.py
output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model, device)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
print(f"Output Embeddings Shape: {output_emb.shape}")
print(f"Output Raw Shape: {output_raw.shape}")
print(f'percentage_value: {percentage}')
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
output_raw.view(len(output_raw),-1),
labels,
percentage)
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
print(f'train_data_emb: {train_data_emb.shape}')
print(f'train_labels: {train_labels.shape}')
print(f'test_data_emb: {test_data_emb.shape}')
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
# Step 9: Generate confusion matrices for both raw and embeddings
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
# Always return to the original working directory after processing
os.chdir(original_dir)
sys.stdout = sys.__stdout__ # Reset print statements
######################## Define the Gradio interface ###############################
js_code = """
() => {
const isDarkMode = window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches;
return isDarkMode ? 'dark' : 'light';
}
"""
with gr.Blocks(css="""
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
.explanation-box {
font-size: 16px;
font-style: italic;
color: #4a4a4a;
padding: 15px;
background-color: #f0f0f0;
border-radius: 10px;
margin-bottom: 20px;
}
.bold-highlight {
font-weight: bold;
color: #2c3e50;
font-size: 18px;
text-align: center;
margin-bottom: 20px;
}
#console-output {
background-color: #ffffff; /* Light background for light mode */
color: #000000; /* Dark text color for contrast */
padding: 10px;
border-radius: 5px;
}
.plot-title {
font-weight: bold;
color: #2c3e50;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:wireless.intel.lab@gmail.com" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/email-wireless.intel.lab@gmail.com-blue.svg?logo=gmail" alt="Email">
</a>
</div>
""")
gr.Markdown("""
<div class="bold-highlight">
πŸš€ Explore the pre-trained <b>LWM Model<b> here:
<a target="_blank" href="https://huggingface.co/wi-lab/lwm">https://huggingface.co/wi-lab/lwm</a>
</div>
""")
# Tab for Beam Prediction Task
with gr.Tab("Beam Prediction Task"):
#gr.Markdown("### Beam Prediction Task")
# Explanation section with creative spacing and minimal design
gr.Markdown("""
<div style="background-color: var(--primary-background); padding: 15px; border-radius: 10px; color: var(--text-primary);">
<h3 style="color: var(--text-primary);">πŸ“‘ <b>Beam Prediction Task</b></h3>
<ul style="padding-left: 20px;">
<li><b>🎯 Goal</b>: Predict the strongest <b>mmWave beam</b> from a predefined codebook using Sub-6 GHz channels.</li>
<li><b>βš™οΈ Adjust Settings</b>: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
<li><b>🧠 Inferences</b>:
<ul>
<li>πŸ” First, the LWM model extracts features.</li>
<li>πŸ€– Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
</ul>
</li>
<li><b>πŸ—ΊοΈ Dataset</b>: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column():
data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
task_complexity_dropdown = gr.Dropdown(label="Task Complexity (Number of Beams)", choices=[16, 32, 64, 128, 256], value=16)
#theme_dropdown = gr.Dropdown(label="Select Theme", choices=['Light', 'Dark'], value='Light')
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=500)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)
theme_dropdown = 'Dark'
# Update the confusion matrices whenever sliders change
data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
#theme_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown, theme_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
# Add a conclusion section at the bottom
gr.Markdown("""
<div class="explanation-box">
The LWM embeddings demonstrate remarkable generalization capabilities, enabling impressive performance even with minimal training samples. This highlights their ability to effectively handle diverse tasks with limited data.
</div>
""")
# Separate Tab for LoS/NLoS Classification Task
with gr.Tab("LoS/NLoS Classification Task"):
#gr.Markdown("### LoS/NLoS Classification Task")
# Explanation section with creative spacing
gr.Markdown("""
<div style="background-color: var(--primary-background); padding: 15px; border-radius: 10px; color: var(--text-primary);">
<h3 style="color: var(--text-primary);">πŸ” <b>LoS/NLoS Classification Task</b></h3>
<ul style="padding-left: 20px;">
<li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
<li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
<li><b>πŸ’‘ Custom Dataset Requirements:</b>
<ul>
<li>πŸ›’ <b>channels</b> array: Shape (N,32,32)</li>
<li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
</ul>
</li>
<li><b>πŸ”— Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
<li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
</ul>
</div>
""")
# Radio button for user choice: predefined data or upload dataset
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
maximum=float(percentage_values_los[-1]),
step=float(percentage_values_los[1] - percentage_values_los[0]),
value=float(percentage_values_los[0]),
label="Percentage of Data for Training")
# File uploader for dataset (only visible if user chooses to upload a dataset)
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
# Confusion matrices display
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=10, elem_id="console-output")
# Update the file uploader visibility based on user choice
def toggle_file_input(choice):
return gr.update(visible=(choice == "Upload Dataset"))
choice_radio.change(fn=toggle_file_input, inputs=[choice_radio], outputs=file_input)
# When user makes a choice, update the display
choice_radio.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
outputs=[raw_img_los, embeddings_img_los, output_textbox])
# When percentage slider changes (for predefined data)
percentage_slider_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Add a conclusion section at the bottom
gr.Markdown("""
<div class="explanation-box">
Despite their compact size (1/32 of the raw channels), LWM CLS embeddings capture rich, holistic information about the channels. This makes them exceptionally well-suited for tasks like LoS/NLoS classification, especially when working with very limited data.
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch()