Sadjad Alikhani
Update app.py
2587718 verified
raw
history blame
9.37 kB
import gradio as gr
import os
from PIL import Image
import numpy as np
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
GENERATED_PATH = os.path.join("images", "generated")
# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
# Map the slider index to the actual value
percentage = percentage_values[percentage_idx]
complexity = complexity_values[complexity_idx]
# Generate the paths to the images
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
# Load images using PIL
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
# Return the loaded images
return raw_image, embeddings_image
import torch
from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo
import numpy as np
import importlib.util
import torch
import numpy as np
import importlib.util
import subprocess
import os
# Function to load the pre-trained model from your cloned repository
def load_custom_model():
# Assume your model is in the cloned LWM repository
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
model = LWM() # Modify this according to your model initialization
model.eval() # Set the model to evaluation mode
return model
# Function to process the uploaded .py file and perform inference using the custom model
def process_python_file(uploaded_file, percentage_idx, complexity_idx):
try:
# Clone the repository if not already done (for model and tokenizer)
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Change the working directory to the cloned LWM folder
if os.path.exists(model_repo_dir):
os.chdir(model_repo_dir)
print(f"Changed working directory to {os.getcwd()}")
else:
return f"Directory {model_repo_dir} does not exist."
# Step 1: Load the custom model
model = load_custom_model()
# Step 2: Import the tokenizer
from input_preprocess import tokenizer
# Step 3: Load the uploaded .py file that contains the wireless channel matrix
# Import the Python file dynamically
spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name)
uploaded_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(uploaded_module)
# Assuming the uploaded file defines a variable called 'channel_matrix'
channel_matrix = uploaded_module.channel_matrix # This should be defined in the uploaded file
# Step 4: Tokenize the data if needed (or perform any necessary preprocessing)
preprocessed_data = tokenizer(manual_data=channel_matrix, gen_raw=True)
# Step 5: Perform inference on the channel matrix using the model
with torch.no_grad():
input_tensor = torch.tensor(preprocessed_data).unsqueeze(0) # Add batch dimension
output = model(input_tensor) # Perform inference
# Step 6: Generate new images based on the inference results
generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
# Save the generated images
generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png")
generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png")
Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path)
Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path)
# Load the generated images
raw_image = Image.open(generated_raw_image_path)
embeddings_image = Image.open(generated_embeddings_image_path)
return raw_image, embeddings_image
except Exception as e:
return str(e), str(e)
# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx, complexity_idx):
if file is not None:
# Process the uploaded file and generate new images
return process_python_file(file, percentage_idx, complexity_idx)
else:
# Display predefined images if no file is uploaded
return display_predefined_images(percentage_idx, complexity_idx)
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Contact Section
gr.Markdown(
"""
## Contact
<div style="display: flex; align-items: center;">
<a target="_blank" href="mailto:info@wirelessmodel.com"><img src="https://img.shields.io/badge/email-info@wirelessmodel.com-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
<a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/telegram-@wirelessmodel-blue.svg?logo=telegram " alt="Telegram"></a>&nbsp;&nbsp;
</div>
"""
)
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates when sliders change
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
# File uploader for uploading .py file
file_input = gr.File(label="Upload .py File", file_types=[".py"])
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates based on file upload or slider changes
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
# Launch the app
if __name__ == "__main__":
demo.launch()