Spaces:
Running
Running
import gradio as gr | |
import os | |
from PIL import Image | |
import numpy as np | |
import pickle | |
import io | |
import sys | |
import torch | |
import subprocess | |
import h5py | |
from sklearn.metrics import confusion_matrix | |
import matplotlib.pyplot as plt | |
# Paths to the predefined images folder | |
RAW_PATH = os.path.join("images", "raw") | |
EMBEDDINGS_PATH = os.path.join("images", "embeddings") | |
# Specific values for percentage of data for training | |
percentage_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] | |
# Custom class to capture print output | |
class PrintCapture(io.StringIO): | |
def __init__(self): | |
super().__init__() | |
self.output = [] | |
def write(self, txt): | |
self.output.append(txt) | |
super().write(txt) | |
def get_output(self): | |
return ''.join(self.output) | |
# Function to load and display predefined images based on user selection | |
def display_predefined_images(percentage_idx): | |
percentage = percentage_values[percentage_idx] | |
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity | |
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png") | |
raw_image = Image.open(raw_image_path) | |
embeddings_image = Image.open(embeddings_image_path) | |
return raw_image, embeddings_image | |
# Function to create random images for LoS/NLoS classification results | |
def create_random_image(size=(300, 300)): | |
random_image = np.random.rand(*size, 3) * 255 | |
return Image.fromarray(random_image.astype('uint8')) | |
# Function to load the pre-trained model from your cloned repository | |
def load_custom_model(): | |
from lwm_model import LWM # Assuming the model is defined in lwm_model.py | |
model = LWM() # Modify this according to your model initialization | |
model.eval() | |
return model | |
import importlib.util | |
# Function to dynamically load a Python module from a given file path | |
def load_module_from_path(module_name, file_path): | |
spec = importlib.util.spec_from_file_location(module_name, file_path) | |
module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(module) | |
return module | |
# Function to split dataset into training and test sets based on user selection | |
def split_dataset(channels, labels, percentage_idx): | |
percentage = percentage_values[percentage_idx] / 100 | |
num_samples = channels.shape[0] | |
train_size = int(num_samples * percentage) | |
print(f'Number of Training Samples: {train_size}') | |
indices = np.arange(num_samples) | |
np.random.shuffle(indices) | |
train_idx, test_idx = indices[:train_size], indices[train_size:] | |
train_data, test_data = channels[train_idx], channels[test_idx] | |
train_labels, test_labels = labels[train_idx], labels[test_idx] | |
return train_data, test_data, train_labels, test_labels | |
# Function to calculate Euclidean distance between a point and a centroid | |
def euclidean_distance(x, centroid): | |
return np.linalg.norm(x - centroid) | |
import torch | |
def classify_based_on_distance(train_data, train_labels, test_data): | |
# Compute the centroids for the two classes | |
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean | |
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean | |
predictions = [] | |
for test_point in test_data: | |
# Compute Euclidean distance between the test point and each centroid | |
dist_0 = euclidean_distance(test_point, centroid_0) | |
dist_1 = euclidean_distance(test_point, centroid_1) | |
predictions.append(0 if dist_0 < dist_1 else 1) | |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor | |
# Function to generate confusion matrix plot | |
def plot_confusion_matrix(y_true, y_pred, title): | |
cm = confusion_matrix(y_true, y_pred) | |
plt.figure(figsize=(5, 5)) | |
plt.imshow(cm, cmap='Blues') | |
plt.title(title) | |
plt.xlabel('Predicted') | |
plt.ylabel('Actual') | |
plt.colorbar() | |
plt.xticks([0, 1], labels=[0, 1]) | |
plt.yticks([0, 1], labels=[0, 1]) | |
plt.tight_layout() | |
plt.savefig(f"{title}.png") | |
return Image.open(f"{title}.png") | |
def identical_train_test_split(output_emb, output_raw, labels, percentage): | |
N = output_emb.shape[0] # Get the total number of samples | |
# Generate the indices for shuffling and splitting | |
indices = torch.randperm(N) # Randomly shuffle the indices | |
# Calculate the split index | |
split_index = int(N * percentage) | |
# Split indices into train and test | |
train_indices = indices[:split_index] # First 80% for training | |
test_indices = indices[split_index:] # Remaining 20% for testing | |
# Select the same indices from both output_emb and output_raw | |
train_emb = output_emb[train_indices] | |
test_emb = output_emb[test_indices] | |
train_raw = output_raw[train_indices] | |
test_raw = output_raw[test_indices] | |
train_labels = labels[train_indices] | |
test_labels = labels[test_indices] | |
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels | |
# Store the original working directory when the app starts | |
original_dir = os.getcwd() | |
def process_hdf5_file(uploaded_file, percentage_idx): | |
capture = PrintCapture() | |
sys.stdout = capture # Redirect print statements to capture | |
try: | |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM" | |
model_repo_dir = "./LWM" | |
# Step 1: Clone the repository if not already done | |
if not os.path.exists(model_repo_dir): | |
print(f"Cloning model repository from {model_repo_url}...") | |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) | |
# Step 2: Verify the repository was cloned and change the working directory | |
repo_work_dir = os.path.join(original_dir, model_repo_dir) | |
if os.path.exists(repo_work_dir): | |
os.chdir(repo_work_dir) # Change the working directory only once | |
print(f"Changed working directory to {os.getcwd()}") | |
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content | |
else: | |
print(f"Directory {repo_work_dir} does not exist.") | |
return | |
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py | |
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py') | |
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py') | |
inference_path = os.path.join(os.getcwd(), 'inference.py') | |
# Load lwm_model | |
lwm_model = load_module_from_path("lwm_model", lwm_model_path) | |
# Load input_preprocess | |
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path) | |
# Load inference | |
inference = load_module_from_path("inference", inference_path) | |
# Step 4: Load the model from lwm_model module | |
device = 'cpu' | |
print(f"Loading the LWM model on {device}...") | |
model = lwm_model.LWM.from_pretrained(device=device) | |
# Step 5: Load the HDF5 file and extract the channels and labels | |
with h5py.File(uploaded_file.name, 'r') as f: | |
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file | |
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file | |
print(f"Loaded dataset with {channels.shape[0]} samples.") | |
# Step 7: Tokenize the data using the tokenizer from input_preprocess | |
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels) | |
# Step 7: Perform inference using the functions from inference.py | |
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model) | |
output_raw = inference.create_raw_dataset(preprocessed_chs, device) | |
print(f"Output Embeddings Shape: {output_emb.shape}") | |
print(f"Output Raw Shape: {output_raw.shape}") | |
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1), | |
output_raw.view(len(output_raw),-1), | |
labels, | |
percentage_idx) | |
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings | |
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw) | |
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb) | |
# Step 9: Generate confusion matrices for both raw and embeddings | |
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)") | |
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)") | |
return raw_cm_image, emb_cm_image, capture.get_output() | |
except Exception as e: | |
return str(e), str(e), capture.get_output() | |
finally: | |
# Always return to the original working directory after processing | |
os.chdir(original_dir) | |
sys.stdout = sys.__stdout__ # Reset print statements | |
# Function to handle logic based on whether a file is uploaded or not | |
def los_nlos_classification(file, percentage_idx): | |
if file is not None: | |
return process_hdf5_file(file, percentage_idx) | |
else: | |
return display_predefined_images(percentage_idx), None | |
# Define the Gradio interface | |
with gr.Blocks(css=""" | |
.vertical-slider input[type=range] { | |
writing-mode: bt-lr; /* IE */ | |
-webkit-appearance: slider-vertical; /* WebKit */ | |
width: 8px; | |
height: 200px; | |
} | |
.slider-container { | |
display: inline-block; | |
margin-right: 50px; | |
text-align: center; | |
} | |
""") as demo: | |
# Contact Section | |
gr.Markdown(""" | |
<div style="text-align: center;"> | |
<a target="_blank" href="https://www.wi-lab.net"> | |
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"> | |
</a> | |
<a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;"> | |
<img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email"> | |
</a> | |
</div> | |
""") | |
# Tabs for Beam Prediction and LoS/NLoS Classification | |
with gr.Tab("Beam Prediction Task"): | |
gr.Markdown("### Beam Prediction Task") | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Row(): | |
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
with gr.Tab("LoS/NLoS Classification Task"): | |
gr.Markdown("### LoS/NLoS Classification Task") | |
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"]) | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Row(): | |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
output_textbox = gr.Textbox(label="Console Output", lines=10) | |
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) | |
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |