MambaOut / models /mambaout.py
whyu's picture
Init commit
b36de75
"""
MambaOut models for image classification.
Some implementations are modified from:
timm (https://github.com/rwightman/pytorch-image-models),
MetaFormer (https://github.com/sail-sg/metaformer),
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
"""
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': 1.0, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
**kwargs
}
default_cfgs = {
'mambaout_femto': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
'mambaout_tiny': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
'mambaout_small': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
'mambaout_base': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
}
class StemLayer(nn.Module):
r""" Code modified from InternImage:
https://github.com/OpenGVLab/InternImage
"""
def __init__(self,
in_channels=3,
out_channels=96,
act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6)):
super().__init__()
self.conv1 = nn.Conv2d(in_channels,
out_channels // 2,
kernel_size=3,
stride=2,
padding=1)
self.norm1 = norm_layer(out_channels // 2)
self.act = act_layer()
self.conv2 = nn.Conv2d(out_channels // 2,
out_channels,
kernel_size=3,
stride=2,
padding=1)
self.norm2 = norm_layer(out_channels)
def forward(self, x):
x = self.conv1(x)
x = x.permute(0, 2, 3, 1)
x = self.norm1(x)
x = x.permute(0, 3, 1, 2)
x = self.act(x)
x = self.conv2(x)
x = x.permute(0, 2, 3, 1)
x = self.norm2(x)
return x
class DownsampleLayer(nn.Module):
r""" Code modified from InternImage:
https://github.com/OpenGVLab/InternImage
"""
def __init__(self, in_channels=96, out_channels=198, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
super().__init__()
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1)
self.norm = norm_layer(out_channels)
def forward(self, x):
x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
x = self.norm(x)
return x
class MlpHead(nn.Module):
""" MLP classification head
"""
def __init__(self, dim, num_classes=1000, act_layer=nn.GELU, mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6), head_dropout=0., bias=True):
super().__init__()
hidden_features = int(mlp_ratio * dim)
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
self.act = act_layer()
self.norm = norm_layer(hidden_features)
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
self.head_dropout = nn.Dropout(head_dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.norm(x)
x = self.head_dropout(x)
x = self.fc2(x)
return x
class GatedCNNBlock(nn.Module):
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
Args:
conv_ratio: control the number of channels to conduct depthwise convolution.
Conduct convolution on partial channels can improve paraitcal efficiency.
The idea of partical channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
"""
def __init__(self, dim, expension_ratio=8/3, kernel_size=7, conv_ratio=1.0,
norm_layer=partial(nn.LayerNorm,eps=1e-6),
act_layer=nn.GELU,
drop_path=0.,
**kwargs):
super().__init__()
self.norm = norm_layer(dim)
hidden = int(expension_ratio * dim)
self.fc1 = nn.Linear(dim, hidden * 2)
self.act = act_layer()
conv_channels = int(conv_ratio * dim)
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels)
self.fc2 = nn.Linear(hidden, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x # [B, H, W, C]
x = self.norm(x)
g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1)
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
c = self.conv(c)
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
x = self.drop_path(x)
return x + shortcut
r"""
downsampling (stem) for the first stage is two layer of conv with k3, s2 and p1
downsamplings for the last 3 stages is a layer of conv with k3, s2 and p1
DOWNSAMPLE_LAYERS_FOUR_STAGES format: [Downsampling, Downsampling, Downsampling, Downsampling]
use `partial` to specify some arguments
"""
DOWNSAMPLE_LAYERS_FOUR_STAGES = [StemLayer] + [DownsampleLayer]*3
class MambaOut(nn.Module):
r""" MetaFormer
A PyTorch impl of : `MetaFormer Baselines for Vision` -
https://arxiv.org/abs/2210.13452
Args:
in_chans (int): Number of input image channels. Default: 3.
num_classes (int): Number of classes for classification head. Default: 1000.
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
downsample_layers: (list or tuple): Downsampling layers before each stage.
drop_path_rate (float): Stochastic depth rate. Default: 0.
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
head_fn: classification head. Default: nn.Linear.
head_dropout (float): dropout for MLP classifier. Default: 0.
"""
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 576],
downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
act_layer=nn.GELU,
conv_ratio=1.0,
kernel_size=7,
drop_path_rate=0.,
output_norm=partial(nn.LayerNorm, eps=1e-6),
head_fn=MlpHead,
head_dropout=0.0,
**kwargs,
):
super().__init__()
self.num_classes = num_classes
if not isinstance(depths, (list, tuple)):
depths = [depths] # it means the model has only one stage
if not isinstance(dims, (list, tuple)):
dims = [dims]
num_stage = len(depths)
self.num_stage = num_stage
if not isinstance(downsample_layers, (list, tuple)):
downsample_layers = [downsample_layers] * num_stage
down_dims = [in_chans] + dims
self.downsample_layers = nn.ModuleList(
[downsample_layers[i](down_dims[i], down_dims[i+1]) for i in range(num_stage)]
)
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
self.stages = nn.ModuleList()
cur = 0
for i in range(num_stage):
stage = nn.Sequential(
*[GatedCNNBlock(dim=dims[i],
norm_layer=norm_layer,
act_layer=act_layer,
kernel_size=kernel_size,
conv_ratio=conv_ratio,
drop_path=dp_rates[cur + j],
) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.norm = output_norm(dims[-1])
if head_dropout > 0.0:
self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout)
else:
self.head = head_fn(dims[-1], num_classes)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {'norm'}
def forward_features(self, x):
for i in range(self.num_stage):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(x.mean([1, 2])) # (B, H, W, C) -> (B, C)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
###############################################################################
# a series of MambaOut models
@register_model
def mambaout_femto(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 3, 9, 3],
dims=[48, 96, 192, 288],
**kwargs)
model.default_cfg = default_cfgs['mambaout_femto']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_tiny(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 576],
**kwargs)
model.default_cfg = default_cfgs['mambaout_tiny']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_small(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 4, 27, 3],
dims=[96, 192, 384, 576],
**kwargs)
model.default_cfg = default_cfgs['mambaout_small']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_base(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 4, 27, 3],
dims=[128, 256, 512, 768],
**kwargs)
model.default_cfg = default_cfgs['mambaout_base']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model