wholewhale
commited on
Commit
•
cfc65ef
1
Parent(s):
2b90e18
revert
Browse files
app.py
CHANGED
@@ -35,26 +35,49 @@ summary_state = gr.State(initial_value="pending")
|
|
35 |
# PDF summary and query using stuffing
|
36 |
def pdf_changes(pdf_doc):
|
37 |
try:
|
38 |
-
|
39 |
-
return "No PDF uploaded."
|
40 |
-
|
41 |
loader = OnlinePDFLoader(pdf_doc.name)
|
42 |
documents = loader.load()
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
embeddings = OpenAIEmbeddings()
|
46 |
global db
|
47 |
-
db = Chroma.from_documents(
|
|
|
48 |
retriever = db.as_retriever()
|
49 |
global qa
|
50 |
qa = ConversationalRetrievalChain.from_llm(
|
51 |
-
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo", max_tokens=-1, n=2),
|
52 |
retriever=retriever,
|
53 |
return_source_documents=False
|
54 |
)
|
55 |
-
|
|
|
|
|
56 |
except Exception as e:
|
57 |
-
return f"Error
|
|
|
58 |
|
59 |
|
60 |
def clear_data():
|
@@ -98,23 +121,23 @@ def infer(question, history):
|
|
98 |
return f"Error querying chatbot: {str(e)}"
|
99 |
|
100 |
def auto_clear_data():
|
101 |
-
|
102 |
-
|
103 |
qa = None
|
104 |
db = None
|
105 |
print("Data cleared successfully.") # Logging
|
106 |
-
|
107 |
def periodic_clear():
|
108 |
-
|
109 |
auto_clear_data()
|
110 |
time.sleep(1000)
|
111 |
-
|
112 |
threading.Thread(target=periodic_clear).start()
|
113 |
-
|
114 |
css = """
|
115 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
116 |
"""
|
117 |
-
|
118 |
title = """
|
119 |
<div style="text-align: center;max-width: 700px;">
|
120 |
<h1>CauseWriter Chat with PDF • OpenAI</h1>
|
@@ -123,40 +146,52 @@ title = """
|
|
123 |
This version is set to erase chat history automatically after page timeout and uses OpenAI.</p>
|
124 |
</div>
|
125 |
"""
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with gr.Blocks(css=css) as demo:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
with gr.Column():
|
132 |
-
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
133 |
-
with gr.Row():
|
134 |
-
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
135 |
-
load_pdf = gr.Button("Convert PDF to Magic AI language")
|
136 |
-
clear_btn = gr.Button("Clear Data")
|
137 |
-
|
138 |
-
# New Textbox to display summary
|
139 |
-
summary_box = gr.Textbox(
|
140 |
-
label="Document Summary",
|
141 |
-
placeholder="Summary will appear here.",
|
142 |
-
interactive=False,
|
143 |
-
rows=5,
|
144 |
-
elem_id="summary_box" # Set the elem_id to match the state key
|
145 |
-
)
|
146 |
-
|
147 |
-
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
|
148 |
-
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
149 |
-
submit_btn = gr.Button("Send Message")
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
|
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
|
35 |
# PDF summary and query using stuffing
|
36 |
def pdf_changes(pdf_doc):
|
37 |
try:
|
38 |
+
# Initialize loader and load documents
|
|
|
|
|
39 |
loader = OnlinePDFLoader(pdf_doc.name)
|
40 |
documents = loader.load()
|
41 |
+
|
42 |
+
# Define the prompt for summarization
|
43 |
+
prompt_template = """Write a concise summary of the following:
|
44 |
+
"{text}"
|
45 |
+
CONCISE SUMMARY:"""
|
46 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
47 |
+
|
48 |
+
# Define the LLM chain with the specified prompt
|
49 |
+
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
|
50 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
51 |
+
|
52 |
+
# Initialize StuffDocumentsChain
|
53 |
+
stuff_chain = StuffDocumentsChain(
|
54 |
+
llm_chain=llm_chain, document_variable_name="text"
|
55 |
+
)
|
56 |
+
|
57 |
+
# Generate summary using StuffDocumentsChain
|
58 |
+
global full_summary
|
59 |
+
full_summary = stuff_chain.run(documents)
|
60 |
+
# Update the state variable
|
61 |
+
return {summary_state: full_summary}
|
62 |
+
|
63 |
+
# Other existing logic for Chroma, embeddings, and retrieval
|
64 |
embeddings = OpenAIEmbeddings()
|
65 |
global db
|
66 |
+
db = Chroma.from_documents(documents, embeddings)
|
67 |
+
|
68 |
retriever = db.as_retriever()
|
69 |
global qa
|
70 |
qa = ConversationalRetrievalChain.from_llm(
|
71 |
+
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo-16k", max_tokens=-1, n=2),
|
72 |
retriever=retriever,
|
73 |
return_source_documents=False
|
74 |
)
|
75 |
+
summary_box.set_value(full_summary)
|
76 |
+
return f"Ready. Full Summary loaded."
|
77 |
+
|
78 |
except Exception as e:
|
79 |
+
return f"Error processing PDF: {str(e)}"
|
80 |
+
|
81 |
|
82 |
|
83 |
def clear_data():
|
|
|
121 |
return f"Error querying chatbot: {str(e)}"
|
122 |
|
123 |
def auto_clear_data():
|
124 |
+
global qa, db, last_interaction_time
|
125 |
+
if time.time() - last_interaction_time > 1000:
|
126 |
qa = None
|
127 |
db = None
|
128 |
print("Data cleared successfully.") # Logging
|
129 |
+
|
130 |
def periodic_clear():
|
131 |
+
while True:
|
132 |
auto_clear_data()
|
133 |
time.sleep(1000)
|
134 |
+
|
135 |
threading.Thread(target=periodic_clear).start()
|
136 |
+
|
137 |
css = """
|
138 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
139 |
"""
|
140 |
+
|
141 |
title = """
|
142 |
<div style="text-align: center;max-width: 700px;">
|
143 |
<h1>CauseWriter Chat with PDF • OpenAI</h1>
|
|
|
146 |
This version is set to erase chat history automatically after page timeout and uses OpenAI.</p>
|
147 |
</div>
|
148 |
"""
|
149 |
+
# Global variable for tracking last interaction time
|
150 |
+
last_interaction_time = 0
|
151 |
+
full_summary = "" # Added global full_summary
|
152 |
+
|
153 |
+
def update_summary_box():
|
154 |
+
global full_summary
|
155 |
+
return {"summary_box": full_summary}
|
156 |
+
|
157 |
with gr.Blocks(css=css) as demo:
|
158 |
+
with gr.Column(elem_id="col-container"):
|
159 |
+
gr.HTML(title)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
with gr.Column():
|
162 |
+
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
163 |
+
with gr.Row():
|
164 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
165 |
+
load_pdf = gr.Button("Convert PDF to Magic AI language")
|
166 |
+
clear_btn = gr.Button("Clear Data")
|
167 |
+
|
168 |
+
# New Textbox to display summary
|
169 |
+
summary_box = gr.Textbox(
|
170 |
+
label="Document Summary",
|
171 |
+
placeholder="Summary will appear here.",
|
172 |
+
interactive=False,
|
173 |
+
rows=5,
|
174 |
+
elem_id="summary_box" # Set the elem_id to match the state key
|
175 |
)
|
176 |
+
|
177 |
|
178 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
|
179 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
180 |
+
submit_btn = gr.Button("Send Message")
|
181 |
+
|
182 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
183 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False).then(
|
184 |
+
update_summary_box
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
# Then update the summary_box
|
189 |
+
clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
|
190 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
191 |
+
bot, chatbot, chatbot
|
192 |
+
)
|
193 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
194 |
+
bot, chatbot, chatbot
|
195 |
+
)
|
196 |
|
197 |
+
demo.launch()
|