wholewhale
commited on
Commit
•
8d1c8be
1
Parent(s):
a41389e
split summary
Browse files
app.py
CHANGED
@@ -37,20 +37,58 @@ def chat_with_pdf(question):
|
|
37 |
prompt = ChatPromptTemplate.from_messages([
|
38 |
("human", pdf_content),
|
39 |
("human", question),
|
|
|
40 |
])
|
41 |
|
42 |
# Invoke the model using the chain
|
43 |
chain = prompt | model
|
44 |
response = chain.invoke({})
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Define Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def gradio_interface(pdf_doc, question):
|
50 |
if not pdf_content:
|
51 |
return load_pdf(pdf_doc)
|
52 |
else:
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
gr.Interface(fn=gradio_interface,
|
56 |
inputs=[gr.File(label="Load a pdf", file_types=['.pdf'], type="file"),
|
|
|
37 |
prompt = ChatPromptTemplate.from_messages([
|
38 |
("human", pdf_content),
|
39 |
("human", question),
|
40 |
+
("human", "Give a clear summary of this pdf information at a 8th grade reading level.")
|
41 |
])
|
42 |
|
43 |
# Invoke the model using the chain
|
44 |
chain = prompt | model
|
45 |
response = chain.invoke({})
|
46 |
+
|
47 |
+
# Get the summary of the PDF content
|
48 |
+
summarizer = pipeline("summarization")
|
49 |
+
summary = summarizer(pdf_content, max_length=1000, min_length=30, do_sample=False)[0]['summary_text']
|
50 |
+
|
51 |
+
# Combine the chat response and the summary
|
52 |
+
combined_response = f"Summary: {summary}\n\nChat Response: {response.content}"
|
53 |
+
|
54 |
+
return combined_response
|
55 |
|
56 |
# Define Gradio UI
|
57 |
+
def gradio_interface(pdf_doc, question):
|
58 |
+
# ...
|
59 |
+
return gr.Interface(
|
60 |
+
fn=chat_with_pdf,
|
61 |
+
inputs=[pdf_doc, question],
|
62 |
+
outputs=gr.outputs.Textbox(),
|
63 |
+
api_name='chat_with_pdf_2'
|
64 |
+
)
|
65 |
+
|
66 |
def gradio_interface(pdf_doc, question):
|
67 |
if not pdf_content:
|
68 |
return load_pdf(pdf_doc)
|
69 |
else:
|
70 |
+
# Get the summary of the PDF content
|
71 |
+
summarizer = pipeline("summarization")
|
72 |
+
summary = summarizer(pdf_content, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
73 |
+
|
74 |
+
# Get the chat response
|
75 |
+
response = chat_with_pdf(question)
|
76 |
+
|
77 |
+
# Define the outputs
|
78 |
+
summary_output = gr.outputs.Textbox(label="Summary")
|
79 |
+
chat_output = gr.outputs.Textbox(label="Chat Response")
|
80 |
+
|
81 |
+
# Return the Gradio interface with the Multi output
|
82 |
+
return gr.Interface(
|
83 |
+
fn=chat_with_pdf,
|
84 |
+
inputs=[pdf_doc, question],
|
85 |
+
outputs=gradio.outputs.Multi(summary_output, chat_output),
|
86 |
+
examples=[["sample.pdf", "What is this document about?"]],
|
87 |
+
api_name='chat_with_pdf_2'
|
88 |
+
)
|
89 |
+
|
90 |
+
gradio_interface(None, None)
|
91 |
+
|
92 |
|
93 |
gr.Interface(fn=gradio_interface,
|
94 |
inputs=[gr.File(label="Load a pdf", file_types=['.pdf'], type="file"),
|