wholewhale
commited on
Commit
•
26a8953
1
Parent(s):
6abee2b
Simple Anthropic
Browse files
app.py
CHANGED
@@ -1,193 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import time
|
4 |
-
import threading
|
5 |
from langchain.document_loaders import OnlinePDFLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
-
from
|
8 |
-
from langchain.embeddings import OpenAIEmbeddings
|
9 |
-
from langchain.vectorstores import Chroma
|
10 |
-
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from langchain.chat_models import ChatOpenAI
|
12 |
-
from langchain.document_loaders import WebBaseLoader
|
13 |
-
from langchain.chains.summarize import load_summarize_chain
|
14 |
-
from langchain.chains.llm import LLMChain
|
15 |
-
from langchain.prompts import PromptTemplate
|
16 |
-
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
return "Working on the upload. Also, pondering the usefulness of sporks..."
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
num_documents = len(self.documents)
|
29 |
-
avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents
|
30 |
-
return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}"
|
31 |
-
|
32 |
-
# Gradio state
|
33 |
-
summary_state = gr.State(initial_value="")
|
34 |
-
|
35 |
-
# Initialize loader and load documents
|
36 |
-
def load_documents(pdf_doc):
|
37 |
-
loader = OnlinePDFLoader(pdf_doc.name)
|
38 |
-
return loader.load()
|
39 |
-
|
40 |
-
# Generate summary using StuffDocumentsChain
|
41 |
-
def generate_summary(documents):
|
42 |
-
prompt_template = """Write a concise summary of the following:
|
43 |
-
"{text}"
|
44 |
-
CONCISE SUMMARY:"""
|
45 |
-
prompt = PromptTemplate.from_template(prompt_template)
|
46 |
-
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
|
47 |
-
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
48 |
-
stuff_chain = StuffDocumentsChain(
|
49 |
-
llm_chain=llm_chain, document_variable_name="text"
|
50 |
-
)
|
51 |
-
return stuff_chain.run(documents)
|
52 |
-
|
53 |
-
# Setup Chroma, embeddings, and retrieval
|
54 |
-
def setup_retrieval(documents):
|
55 |
-
embeddings = OpenAIEmbeddings()
|
56 |
-
db = Chroma.from_documents(documents, embeddings)
|
57 |
-
retriever = db.as_retriever()
|
58 |
-
qa = ConversationalRetrievalChain.from_llm(
|
59 |
-
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo-16k", max_tokens=-1, n=2),
|
60 |
-
retriever=retriever,
|
61 |
-
return_source_documents=False
|
62 |
-
)
|
63 |
-
return db, qa
|
64 |
-
|
65 |
-
# Main function to handle PDF changes
|
66 |
-
def pdf_changes(pdf_doc):
|
67 |
try:
|
68 |
-
|
69 |
-
|
70 |
-
full_summary = generate_summary(documents)
|
71 |
-
summary_state.value = full_summary # Update the state variable
|
72 |
-
# ... (rest of your code)
|
73 |
-
return f"Ready. Full Summary loaded."
|
74 |
-
except Exception as e:
|
75 |
-
return f"Error processing PDF: {str(e)}"
|
76 |
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
global qa, db
|
80 |
-
qa = None
|
81 |
-
db = None
|
82 |
-
return "Data cleared"
|
83 |
|
84 |
-
def add_text(history, text):
|
85 |
-
global last_interaction_time
|
86 |
-
last_interaction_time = time.time()
|
87 |
-
history = history + [(text, None)]
|
88 |
-
return history, ""
|
89 |
-
|
90 |
-
def bot(history):
|
91 |
-
global full_summary
|
92 |
-
if 'summary' in history[-1][0].lower(): # Check if the last question asks for a summary
|
93 |
-
response = full_summary
|
94 |
-
return full_summary
|
95 |
-
else:
|
96 |
-
response = infer(history[-1][0], history)
|
97 |
-
|
98 |
-
sentences = ' \n'.join(response.split('. '))
|
99 |
-
formatted_response = f"**Bot:**\n\n{sentences}"
|
100 |
-
history[-1][1] = formatted_response
|
101 |
-
return history
|
102 |
-
|
103 |
-
|
104 |
-
def infer(question, history):
|
105 |
-
try:
|
106 |
-
res = []
|
107 |
-
for human, ai in history[:-1]:
|
108 |
-
pair = (human, ai)
|
109 |
-
res.append(pair)
|
110 |
-
|
111 |
-
chat_history = res
|
112 |
-
query = question
|
113 |
-
result = qa({"question": query, "chat_history": chat_history, "system": "This is a world-class summarizing AI, be helpful."})
|
114 |
-
return result["answer"]
|
115 |
except Exception as e:
|
116 |
-
return f"Error
|
117 |
|
118 |
-
def
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
db = None
|
123 |
-
print("Data cleared successfully.") # Logging
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
""
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
when everything is ready, you can start asking questions about the pdf. Limit ~11k words. <br />
|
141 |
-
This version is set to erase chat history automatically after page timeout and uses OpenAI.</p>
|
142 |
-
</div>
|
143 |
-
"""
|
144 |
-
# Global variable for tracking last interaction time
|
145 |
-
last_interaction_time = 0
|
146 |
-
full_summary = "" # Added global full_summary
|
147 |
-
|
148 |
-
def update_summary_box():
|
149 |
-
global full_summary
|
150 |
-
return {"summary_box": full_summary}
|
151 |
-
|
152 |
-
with gr.Blocks(css=css) as demo:
|
153 |
-
with gr.Column(elem_id="col-container"):
|
154 |
-
gr.HTML(title)
|
155 |
-
|
156 |
-
with gr.Column():
|
157 |
-
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
158 |
-
with gr.Row():
|
159 |
-
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
160 |
-
load_pdf = gr.Button("Convert PDF to Magic AI language")
|
161 |
-
clear_btn = gr.Button("Clear Data")
|
162 |
-
|
163 |
-
# New Textbox to display summary
|
164 |
-
summary_box = gr.Textbox(
|
165 |
-
label="Document Summary",
|
166 |
-
placeholder="Summary will appear here.",
|
167 |
-
interactive=False,
|
168 |
-
rows=5,
|
169 |
-
elem_id="summary_box",
|
170 |
-
state=summary_state # Bind the state here
|
171 |
-
)
|
172 |
-
|
173 |
-
|
174 |
-
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
|
175 |
-
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
176 |
-
submit_btn = gr.Button("Send Message")
|
177 |
-
|
178 |
-
load_pdf.click(loading_pdf, None, langchain_status)
|
179 |
-
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False).then(
|
180 |
-
update_summary_box
|
181 |
-
)
|
182 |
-
|
183 |
-
|
184 |
-
# Then update the summary_box
|
185 |
-
clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
|
186 |
-
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
187 |
-
bot, chatbot, chatbot
|
188 |
-
)
|
189 |
-
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
190 |
-
bot, chatbot, chatbot
|
191 |
-
)
|
192 |
-
|
193 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
from langchain.document_loaders import OnlinePDFLoader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from anthropic import LanguageModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Set API keys from environment variables
|
8 |
+
os.environ['ANTHROPIC_API_KEY'] = os.getenv("Your_Anthropic_API_Key")
|
9 |
|
10 |
+
# Initialize the Anthropic model
|
11 |
+
anthropic_model = LanguageModel(api_key=os.environ['ANTHROPIC_API_KEY'], model="some_model")
|
12 |
|
13 |
+
pdf_content = ""
|
|
|
14 |
|
15 |
+
def load_pdf(pdf_doc):
|
16 |
+
global pdf_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
+
if pdf_doc is None:
|
19 |
+
return "No PDF uploaded."
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Load and split PDF content
|
22 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
23 |
+
documents = loader.load()
|
24 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
25 |
+
pdf_content = ' '.join(text_splitter.split_documents(documents))
|
26 |
|
27 |
+
return "PDF Loaded Successfully."
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
except Exception as e:
|
30 |
+
return f"Error processing PDF: {e}"
|
31 |
|
32 |
+
def chat_with_pdf(question):
|
33 |
+
context = [{"role": "system", "content": pdf_content}]
|
34 |
+
response = anthropic_model.query(question, context=context)
|
35 |
+
return response['answer']
|
|
|
|
|
36 |
|
37 |
+
# Define Gradio UI
|
38 |
+
def gradio_interface(pdf_doc, question):
|
39 |
+
if not pdf_content:
|
40 |
+
return load_pdf(pdf_doc)
|
41 |
+
else:
|
42 |
+
return chat_with_pdf(question)
|
43 |
+
|
44 |
+
gr.Interface(fn=gradio_interface,
|
45 |
+
inputs=[gr.File(label="Load a pdf", file_types=['.pdf'], type="file"),
|
46 |
+
gr.Textbox(label="Ask a question about the PDF")],
|
47 |
+
outputs="text",
|
48 |
+
live=True,
|
49 |
+
title="Chat with PDF content using Anthropic",
|
50 |
+
description="Upload a .PDF and interactively chat about its content."
|
51 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|