Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Bot.jpg filter=lfs diff=lfs merge=lfs -text
|
Bot.jpg
ADDED
Git LFS Details
|
bot.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
from auto_gptq import AutoGPTQForCausalLM
|
5 |
+
# from ctransformers import AutoModelForCausalLM, AutoConfig, Config
|
6 |
+
from transformers import AutoTokenizer, pipeline, GenerationConfig
|
7 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain.retrievers import MultiQueryRetriever
|
10 |
+
# from langchain.retrievers.document_compressors import LLMChainExtractor
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.memory import ConversationBufferWindowMemory
|
13 |
+
from langchain_community.llms import llamacpp, huggingface_pipeline
|
14 |
+
from langchain.prompts import PromptTemplate
|
15 |
+
from langchain.chains import LLMChain
|
16 |
+
from langchain.chains.question_answering import load_qa_chain
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
# import os
|
20 |
+
# os.getenv('hf_token')
|
21 |
+
# MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
|
22 |
+
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a
|
23 |
+
standalone question without changing the content in given question.
|
24 |
+
Chat History:
|
25 |
+
{chat_history}
|
26 |
+
Follow Up Input: {question}
|
27 |
+
Standalone question:"""
|
28 |
+
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
29 |
+
Read the given context before answering questions and think step by step. If you can not answer a user question based on the provided context, inform the user.
|
30 |
+
Do not use any other information for answering the user. Provide a detailed answer to the question."""
|
31 |
+
|
32 |
+
load_dotenv()
|
33 |
+
|
34 |
+
def load_quantized_model_gptq(model_id, model_basename):
|
35 |
+
# if ".safetensors" in model_basename:
|
36 |
+
# model_basename = model_basename.replace(".safetensors", "")
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, cache_dir = r"E:\AW\LLMs\models")
|
38 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
39 |
+
model_id,
|
40 |
+
# model_basename=model_basename,
|
41 |
+
use_safetensors=True,
|
42 |
+
trust_remote_code=True,
|
43 |
+
device_map="auto",
|
44 |
+
use_triton=False,
|
45 |
+
cache_dir = r"E:\AW\LLMs\models"
|
46 |
+
)
|
47 |
+
generation_config = GenerationConfig.from_pretrained(model_id)
|
48 |
+
pipe = pipeline(
|
49 |
+
"text-generation",
|
50 |
+
model=model, #type: ignore
|
51 |
+
tokenizer=tokenizer,
|
52 |
+
max_length=20000,
|
53 |
+
temperature=0.7,
|
54 |
+
# top_p=0.95,
|
55 |
+
repetition_penalty=1.15,
|
56 |
+
generation_config=generation_config,
|
57 |
+
)
|
58 |
+
local_llm = huggingface_pipeline.HuggingFacePipeline(pipeline=pipe)
|
59 |
+
return local_llm
|
60 |
+
|
61 |
+
def load_quantized_model(model_id=None):
|
62 |
+
MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
|
63 |
+
# if model_id == "Zephyr-7b-Beta":
|
64 |
+
# MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
|
65 |
+
# elif model_id == "Llama-2-7b-chat":
|
66 |
+
# MODEL_ID, MODEL_BASENAME = "TheBloke/Llama-2-7b-Chat-GGUF","llama-2-7b-chat.Q4_K_M.gguf"
|
67 |
+
|
68 |
+
try:
|
69 |
+
# logging.info("Using LlamaCPP for GGUF quantized model")
|
70 |
+
model_path = hf_hub_download(
|
71 |
+
repo_id=MODEL_ID,
|
72 |
+
filename=MODEL_BASENAME,
|
73 |
+
resume_download=True,
|
74 |
+
cache_dir = r"E:\AW\LLMs\models"
|
75 |
+
)
|
76 |
+
kwargs = {
|
77 |
+
'model_path': model_path,
|
78 |
+
'n_ctx': 10000,
|
79 |
+
'max_tokens': 10000,
|
80 |
+
'n_batch': 512,
|
81 |
+
# 'n_gpu_layers':6,
|
82 |
+
}
|
83 |
+
# offloading 5 layers to gpu gave ans in 6-7 mins; 3270 mb of VRAM
|
84 |
+
return llamacpp.LlamaCpp(**kwargs)
|
85 |
+
except TypeError:
|
86 |
+
print("Supported model architecture: Llama, Mistral")
|
87 |
+
return None
|
88 |
+
|
89 |
+
def upload_files(files):
|
90 |
+
file_paths = [file.name for file in files]
|
91 |
+
return file_paths
|
92 |
+
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown(
|
95 |
+
"""
|
96 |
+
<h2> <center> PrivateGPT </center> </h2>
|
97 |
+
""")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column(scale=2): #type:ignore
|
101 |
+
# with gr.Column(scale=5):
|
102 |
+
# with gr.Row():
|
103 |
+
# file_output = gr.File(label="Uploaded Documents",show_label=True)
|
104 |
+
# with gr.Row():
|
105 |
+
# upload_button = gr.UploadButton("Click to upload files", file_types=[".pdf", ".csv", ".xlsx", ".txt"], file_count="multiple")
|
106 |
+
# upload_button.upload(upload_files, upload_button, file_output)
|
107 |
+
with gr.Row():
|
108 |
+
model_id = gr.Radio(["Zephyr-7b-Beta", "Llama-2-7b-chat"], value="Llama-2-7b-chat",label="LLM Model")
|
109 |
+
# Temp = gr.Slider(minimum=0, maximum=5, step=0.1, info="Adjust the [random parameter] of LLM from here")
|
110 |
+
with gr.Row():
|
111 |
+
mode = gr.Radio(['Document', 'Data'], value='Document',label="QA mode")
|
112 |
+
# print(f"selected {model} model with {Temp} temperature")
|
113 |
+
persist_directory = "db"
|
114 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
115 |
+
model_name = "BAAI/bge-small-en-v1.5",
|
116 |
+
model_kwargs={"device": "cpu"},
|
117 |
+
encode_kwargs = {'normalize_embeddings':True},
|
118 |
+
cache_folder=r"E:\AW\LLMs\models",
|
119 |
+
)
|
120 |
+
db2 = Chroma(persist_directory = persist_directory,embedding_function = embeddings)
|
121 |
+
# llm = load_quantized_model(model_id=model_id) #type:ignore
|
122 |
+
MODEL_ID = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
123 |
+
# MODEL_I = "HuggingFaceH4/zephyr-7b-beta"
|
124 |
+
MODEL_BASENAME = "gptq-4bit-32g-actorder_True"
|
125 |
+
# ---------------------------------------------------------------------------------------------------
|
126 |
+
# llm = load_quantized_model_gptq(model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
127 |
+
llm = load_quantized_model()
|
128 |
+
# ---------------------------------------------------------------------------------------------------
|
129 |
+
condense_question_prompt_template = PromptTemplate.from_template(_template)
|
130 |
+
prompt_template = system_prompt + """
|
131 |
+
{context}
|
132 |
+
Question: {question}
|
133 |
+
Helpful Answer:"""
|
134 |
+
qa_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
135 |
+
memory = ConversationBufferWindowMemory(memory_key='chat_history', k=1, return_messages=True)
|
136 |
+
|
137 |
+
# memory = ConversationKGMemory(llm=llm, memory_key='chat_history', return_messages=True)
|
138 |
+
# compressor = LLMChainExtractor.from_llm(llm=llm)
|
139 |
+
# compression_retriever = ContextualCompressionRetriever(
|
140 |
+
# base_compressor=compressor,
|
141 |
+
# base_retriever=db2.as_retriever(search_kwargs={'k':5})
|
142 |
+
# )
|
143 |
+
retriever_from_llm = MultiQueryRetriever.from_llm(
|
144 |
+
retriever=db2.as_retriever(search_kwargs={'k':5}),
|
145 |
+
llm = llm,
|
146 |
+
# llm = load_quantized_model(model_id="TheBloke/Llama-2-7B-Chat-GPTQ")
|
147 |
+
)
|
148 |
+
qa2 = ConversationalRetrievalChain(
|
149 |
+
# retriever=db.as_retriever(),
|
150 |
+
retriever=retriever_from_llm,
|
151 |
+
question_generator= LLMChain(llm=llm, prompt=condense_question_prompt_template, memory=memory, verbose=True), #type:ignore
|
152 |
+
combine_docs_chain=load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt, verbose=True), #type:ignore
|
153 |
+
memory=memory,
|
154 |
+
verbose=True,
|
155 |
+
# type: ignore
|
156 |
+
)
|
157 |
+
def add_text(history, text):
|
158 |
+
history = history + [(text, None)]
|
159 |
+
return history, ""
|
160 |
+
|
161 |
+
def bot(history):
|
162 |
+
res = qa2.invoke(
|
163 |
+
{
|
164 |
+
'question': history[-1][0],
|
165 |
+
'chat_history': history[:-1]
|
166 |
+
}
|
167 |
+
)
|
168 |
+
history[-1][1] = res['answer']
|
169 |
+
torch.cuda.empty_cache()
|
170 |
+
return history
|
171 |
+
with gr.Column(scale=8): # type: ignore
|
172 |
+
with gr.Row():
|
173 |
+
chatbot = gr.Chatbot([], elem_id="chatbot",label="Chat", height=500, show_label=True, avatar_images=["user.jpeg","Bot.jpg"])
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column(scale=8): # type: ignore
|
176 |
+
txt = gr.Textbox(
|
177 |
+
show_label=False,
|
178 |
+
placeholder="Enter text and press enter",
|
179 |
+
container=False,
|
180 |
+
)
|
181 |
+
with gr.Column(scale=1): # type: ignore
|
182 |
+
submit_btn = gr.Button(
|
183 |
+
'Submit',
|
184 |
+
variant='primary'
|
185 |
+
)
|
186 |
+
with gr.Column(scale=1): # type: ignore
|
187 |
+
clear_btn = gr.Button(
|
188 |
+
'Clear',
|
189 |
+
variant="stop"
|
190 |
+
)
|
191 |
+
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
|
192 |
+
bot, chatbot, chatbot
|
193 |
+
)
|
194 |
+
submit_btn.click(add_text, [chatbot, txt], [chatbot, txt]).then(
|
195 |
+
bot, chatbot, chatbot
|
196 |
+
)
|
197 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
demo.queue()
|
201 |
+
# demo.launch(share=True)
|
202 |
+
demo.launch(max_threads=40)
|
user.jpeg
ADDED