whispy commited on
Commit
8708673
1 Parent(s): c4545fd

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +96 -0
  2. packages.txt +1 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import gradio as gr
4
+ import pytube as pt
5
+ from transformers import pipeline
6
+
7
+
8
+ MODEL_NAME = "whispy/whisper_italian"
9
+
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ pipe = pipeline(
13
+ task="automatic-speech-recognition",
14
+ model=MODEL_NAME,
15
+ chunk_length_s=30,
16
+ device=device,
17
+ )
18
+
19
+
20
+ def transcribe(microphone, file_upload):
21
+ warn_output = ""
22
+ if (microphone is not None) and (file_upload is not None):
23
+ warn_output = (
24
+ "WARNING: You've uploaded an audio file and used the microphone. "
25
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
26
+ )
27
+
28
+ elif (microphone is None) and (file_upload is None):
29
+ return "ERROR: You have to either use the microphone or upload an audio file"
30
+
31
+ file = microphone if microphone is not None else file_upload
32
+
33
+ text = pipe(file)["text"]
34
+
35
+ return warn_output + text
36
+
37
+
38
+ def _return_yt_html_embed(yt_url):
39
+ video_id = yt_url.split("?v=")[-1]
40
+ HTML_str = (
41
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
42
+ " </center>"
43
+ )
44
+ return HTML_str
45
+
46
+
47
+ def yt_transcribe(yt_url):
48
+ yt = pt.YouTube(yt_url)
49
+ html_embed_str = _return_yt_html_embed(yt_url)
50
+ stream = yt.streams.filter(only_audio=True)[0]
51
+ stream.download(filename="audio.mp3")
52
+
53
+ text = pipe("audio.mp3")["text"]
54
+
55
+ return html_embed_str, text
56
+
57
+
58
+ demo = gr.Blocks()
59
+
60
+ mf_transcribe = gr.Interface(
61
+ fn=transcribe,
62
+ inputs=[
63
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
64
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
65
+ ],
66
+ outputs="text",
67
+ layout="horizontal",
68
+ theme="huggingface",
69
+ title="Whisper Demo: Transcribe Audio",
70
+ description=(
71
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
72
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
73
+ " of arbitrary length."
74
+ ),
75
+ allow_flagging="never",
76
+ )
77
+
78
+ yt_transcribe = gr.Interface(
79
+ fn=yt_transcribe,
80
+ inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
81
+ outputs=["html", "text"],
82
+ layout="horizontal",
83
+ theme="huggingface",
84
+ title="Whisper Demo: Transcribe YouTube",
85
+ description=(
86
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
87
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
88
+ " arbitrary length."
89
+ ),
90
+ allow_flagging="never",
91
+ )
92
+
93
+ with demo:
94
+ gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
95
+
96
+ demo.launch(enable_queue=True)
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ffmpeg
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ #pytube