Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
|
| 5 |
import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -15,8 +15,9 @@ if torch.cuda.is_available():
|
|
| 15 |
else:
|
| 16 |
torch_dtype = torch.float32
|
| 17 |
|
| 18 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype
|
| 19 |
pipe = pipe.to(device)
|
|
|
|
| 20 |
|
| 21 |
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
| 3 |
import random
|
| 4 |
|
| 5 |
import spaces #[uncomment to use ZeroGPU]
|
| 6 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 15 |
else:
|
| 16 |
torch_dtype = torch.float32
|
| 17 |
|
| 18 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 19 |
pipe = pipe.to(device)
|
| 20 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
|
| 21 |
|
| 22 |
MAX_SEED = np.iinfo(np.int32).max
|
| 23 |
MAX_IMAGE_SIZE = 1024
|