Spaces:
Sleeping
Sleeping
import trimesh | |
import numpy as np | |
from x_transformers.autoregressive_wrapper import top_p, top_k | |
class Dataset: | |
''' | |
A toy dataset for inference | |
''' | |
def __init__(self, input_type, input_list): | |
super().__init__() | |
self.data = [] | |
if input_type == 'pc_normal': | |
for input_path in input_list: | |
# load npy | |
cur_data = np.load(input_path) | |
# sample 4096 | |
assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points" | |
idx = np.random.choice(cur_data.shape[0], 4096, replace=False) | |
cur_data = cur_data[idx] | |
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]}) | |
elif input_type == 'mesh': | |
mesh_list, pc_list = [], [] | |
for input_path in input_list: | |
# sample point cloud and normal from mesh | |
cur_data = trimesh.load(input_path, force='mesh') | |
cur_data = apply_normalize(cur_data) | |
mesh_list.append(cur_data) | |
pc_list.append(sample_pc(cur_data, pc_num=4096, with_normal=True)) | |
for input_path, cur_data in zip(input_list, pc_list): | |
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]}) | |
print(f"dataset total data samples: {len(self.data)}") | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
data_dict = {} | |
data_dict['pc_normal'] = self.data[idx]['pc_normal'] | |
data_dict['uid'] = self.data[idx]['uid'] | |
return data_dict | |
def joint_filter(logits, k = 50, p=0.95): | |
logits = top_k(logits, k = k) | |
logits = top_p(logits, thres = p) | |
return logits | |
def apply_normalize(mesh): | |
''' | |
normalize mesh to [-1, 1] | |
''' | |
bbox = mesh.bounds | |
center = (bbox[1] + bbox[0]) / 2 | |
scale = (bbox[1] - bbox[0]).max() | |
mesh.apply_translation(-center) | |
mesh.apply_scale(1 / scale * 2 * 0.95) | |
return mesh | |
def sample_pc(mesh_path, pc_num, with_normal=False): | |
mesh = trimesh.load(mesh_path, force='mesh', process=False) | |
mesh = apply_normalize(mesh) | |
if not with_normal: | |
points, _ = mesh.sample(pc_num, return_index=True) | |
return points | |
points, face_idx = mesh.sample(50000, return_index=True) | |
normals = mesh.face_normals[face_idx] | |
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16) | |
# random sample point cloud | |
ind = np.random.choice(pc_normal.shape[0], pc_num, replace=False) | |
pc_normal = pc_normal[ind] | |
return pc_normal | |