Spaces:
Runtime error
Runtime error
import os | |
# Clone the repository | |
os.system("git clone https://github.com/TimDettmers/bitsandbytes.git") | |
# Change into the cloned repository | |
os.system("cd bitsandbytes/") | |
# Install dependencies | |
os.system("pip install -r requirements-dev.txt") | |
# Configure with CUDA support | |
os.system("cmake -DCOMPUTE_BACKEND=cuda -S .") | |
# Build and install | |
os.system("make") | |
os.system("pip install .") | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import torch | |
model_name = "ruslanmv/Medical-Llama3-8B" | |
device_map = 'auto' | |
# Check if GPU is available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
if device.type == "cuda": | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
trust_remote_code=True, | |
use_cache=False, | |
device_map=device_map | |
) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
def askme(symptoms, question): | |
sys_message = ''' | |
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and | |
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. | |
''' | |
content = symptoms + " " + question | |
messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}] | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True) | |
response_text = tokenizer.batch_decode(outputs)[0].strip() | |
answer = response_text.split('<|im_start|>assistant')[-1].strip() | |
return answer | |
# Example usage | |
symptoms = ''' | |
I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, | |
increased sensitivity to cold, and dry, itchy skin. | |
''' | |
question = ''' | |
Could these symptoms be related to hypothyroidism? | |
If so, what steps should I take to get a proper diagnosis and discuss treatment options? | |
''' | |
examples = [ | |
[symptoms, question] | |
] | |
iface = gr.Interface( | |
fn=askme, | |
inputs=["text", "text"], | |
outputs="text", | |
examples=examples, | |
title="Medical AI Chatbot", | |
description="Ask me a medical question!" | |
) | |
iface.launch() | |