Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
from
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
-
return tokenizer, model
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"TheBloke/Python-Code-13B-GGUF": "TheBloke/Python-Code-13B-GGUF",
|
| 17 |
-
"replit/replit-code-v1_5-3b": "replit/replit-code-v1_5-3b",
|
| 18 |
-
"neulab/codebert-python": "neulab/codebert-python"
|
| 19 |
-
}
|
| 20 |
|
| 21 |
-
# Load selected datasets
|
| 22 |
-
datasets = {
|
| 23 |
-
"kye/all-huggingface-python-code": "kye/all-huggingface-python-code",
|
| 24 |
-
"ajibawa-2023/Python-Code-23k-ShareGPT": "ajibawa-2023/Python-Code-23k-ShareGPT",
|
| 25 |
-
"suvadityamuk/huggingface-transformers-code-dataset": "suvadityamuk/huggingface-transformers-code-dataset"
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
# Define the function for code generation
|
| 29 |
-
def generate_code(prompt, model_name, dataset_name, temperature, max_length):
|
| 30 |
-
tokenizer, model = load_model(models[model_name])
|
| 31 |
-
|
| 32 |
-
# Load dataset (for reference, not directly used)
|
| 33 |
-
dataset = load_dataset(datasets[dataset_name], split="train")
|
| 34 |
-
|
| 35 |
-
# Tokenize input prompt
|
| 36 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 37 |
-
|
| 38 |
-
# Generate output
|
| 39 |
-
output_ids = model.generate(**inputs, temperature=temperature, max_length=max_length)
|
| 40 |
-
generated_code = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 41 |
-
|
| 42 |
-
return generated_code
|
| 43 |
-
|
| 44 |
-
# Create Gradio Interface
|
| 45 |
iface = gr.Interface(
|
| 46 |
-
fn=
|
| 47 |
-
inputs=
|
| 48 |
-
|
| 49 |
-
gr.
|
| 50 |
-
gr.
|
| 51 |
-
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.5),
|
| 52 |
-
gr.Slider(label="Max Length", minimum=10, maximum=1000, value=200)
|
| 53 |
],
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
description="Select a model and dataset, input a prompt, and generate Python code using AI models."
|
| 57 |
)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from models.codet5 import CodeT5
|
| 3 |
+
from models.other_models import OtherModels
|
| 4 |
+
from repositories.github_api import GitHubAPI
|
| 5 |
|
| 6 |
+
codet5_model = CodeT5()
|
| 7 |
+
other_models = OtherModels()
|
| 8 |
+
github_api = GitHubAPI()
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def analyze_repository(repo_url):
|
| 11 |
+
repo_data = github_api.get_repository(repo_url)
|
| 12 |
+
optimization_results = codet5_model.analyze(repo_data, github_api)
|
| 13 |
+
bug_hunting_results = other_models.analyze(repo_data, github_api)
|
| 14 |
+
return optimization_results, bug_hunting_results
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
iface = gr.Interface(
|
| 17 |
+
fn=analyze_repository,
|
| 18 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter GitHub Repository URL (e.g., https://github.com/owner/repo)"),
|
| 19 |
+
outputs=[
|
| 20 |
+
gr.Textbox(lines=10, label="Optimization Results"),
|
| 21 |
+
gr.Textbox(lines=10, label="Bug Hunting Results"),
|
|
|
|
|
|
|
| 22 |
],
|
| 23 |
+
title="GitHub Repository Analyzer",
|
| 24 |
+
description="Analyze GitHub repositories for optimization suggestions and potential bugs using CodeT5 and other models.",
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
+
iface.launch()
|
|
|