Spaces:
Paused
Paused
Update code_generator.py
Browse files- code_generator.py +22 -3
code_generator.py
CHANGED
|
@@ -1,15 +1,24 @@
|
|
| 1 |
import transformers
|
|
|
|
| 2 |
|
| 3 |
def generate(idea):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
# Load the code generation model
|
| 5 |
-
model_name = "
|
| 6 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 8 |
|
| 9 |
# Generate the code
|
| 10 |
input_text = f"""
|
| 11 |
# Idea: {idea}
|
| 12 |
-
|
| 13 |
# Code:
|
| 14 |
"""
|
| 15 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
|
@@ -19,7 +28,17 @@ def generate(idea):
|
|
| 19 |
num_return_sequences=1,
|
| 20 |
no_repeat_ngram_size=2,
|
| 21 |
early_stopping=True,
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import transformers
|
| 2 |
+
from transformers import pipeline
|
| 3 |
|
| 4 |
def generate(idea):
|
| 5 |
+
"""Generates code based on a given idea using the PhiCo-D-Instruk model.
|
| 6 |
+
|
| 7 |
+
Args:
|
| 8 |
+
idea: The idea for the code to be generated.
|
| 9 |
+
|
| 10 |
+
Returns:
|
| 11 |
+
The generated code as a string.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
# Load the code generation model
|
| 15 |
+
model_name = "bigscience/T0_3B" # Use a model that works for code generation
|
| 16 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
| 17 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 18 |
|
| 19 |
# Generate the code
|
| 20 |
input_text = f"""
|
| 21 |
# Idea: {idea}
|
|
|
|
| 22 |
# Code:
|
| 23 |
"""
|
| 24 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
|
|
|
| 28 |
num_return_sequences=1,
|
| 29 |
no_repeat_ngram_size=2,
|
| 30 |
early_stopping=True,
|
| 31 |
+
temperature=0.7, # Adjust temperature for creativity
|
| 32 |
+
top_k=50, # Adjust top_k for diversity
|
| 33 |
)
|
| 34 |
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
| 35 |
|
| 36 |
+
# Remove the prompt and formatting
|
| 37 |
+
generated_code = generated_code.split("\n# Code:")[1].strip()
|
| 38 |
+
|
| 39 |
+
return generated_code
|
| 40 |
+
|
| 41 |
+
# Example usage
|
| 42 |
+
idea = "Write a Python function to calculate the factorial of a number"
|
| 43 |
+
code = generate(idea)
|
| 44 |
+
print(code)
|