Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import streamlit as st
|
3 |
import subprocess
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
5 |
import black
|
@@ -9,17 +8,13 @@ import sys
|
|
9 |
import torch
|
10 |
from huggingface_hub import hf_hub_url, cached_download, HfApi, InferenceClient
|
11 |
import base64
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
load_dotenv()
|
18 |
|
19 |
-
# Use the HUGGINGFACE_TOKEN in your code
|
20 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
21 |
-
print(HUGGINGFACE_TOKEN)
|
22 |
-
r
|
23 |
# Add the new HTML code below
|
24 |
custom_html = '''
|
25 |
<div style='position:fixed;bottom:0;left:0;width:100%;'>
|
@@ -73,7 +68,7 @@ AVAILABLE_CODE_GENERATIVE_MODELS = [
|
|
73 |
]
|
74 |
|
75 |
# Load pre-trained RAG retriever
|
76 |
-
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
|
77 |
|
78 |
# Load pre-trained chat model
|
79 |
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
|
@@ -244,7 +239,7 @@ def chat_interface_with_agent(input_text, agent_name):
|
|
244 |
input_ids = input_ids[:, :max_input_length]
|
245 |
|
246 |
outputs = model.generate(
|
247 |
-
input_ids, max_new_tokens=
|
248 |
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
249 |
)
|
250 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
4 |
import black
|
|
|
8 |
import torch
|
9 |
from huggingface_hub import hf_hub_url, cached_download, HfApi, InferenceClient
|
10 |
import base64
|
11 |
+
import streamlit as st
|
12 |
|
13 |
+
# Use a publicly available model that doesn't require authentication
|
14 |
+
rag_retriever = pipeline("retrieval-question-answering", model="distilbert-base-nq")
|
15 |
|
16 |
+
st.write("Pipeline created successfully")
|
|
|
17 |
|
|
|
|
|
|
|
|
|
18 |
# Add the new HTML code below
|
19 |
custom_html = '''
|
20 |
<div style='position:fixed;bottom:0;left:0;width:100%;'>
|
|
|
68 |
]
|
69 |
|
70 |
# Load pre-trained RAG retriever
|
71 |
+
# rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
|
72 |
|
73 |
# Load pre-trained chat model
|
74 |
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
|
|
|
239 |
input_ids = input_ids[:, :max_input_length]
|
240 |
|
241 |
outputs = model.generate(
|
242 |
+
input_ids, max_new_tokens=1000, num_return_sequences=1, do_sample=True,
|
243 |
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
244 |
)
|
245 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|