Spaces:
Running
Running
from typing import List | |
import torch | |
import numpy as np | |
import cv2 | |
import random | |
from pytorch_grad_cam.base_cam import BaseCAM | |
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
def cells_to_bboxes(predictions, anchors, S, is_preds=True): | |
""" | |
Scales the predictions coming from the model to | |
be relative to the entire image such that they for example later | |
can be plotted or. | |
INPUT: | |
predictions: tensor of size (N, 3, S, S, num_classes+5) | |
anchors: the anchors used for the predictions | |
S: the number of cells the image is divided in on the width (and height) | |
is_preds: whether the input is predictions or the true bounding boxes | |
OUTPUT: | |
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index, | |
object score, bounding box coordinates | |
""" | |
BATCH_SIZE = predictions.shape[0] | |
num_anchors = len(anchors) | |
box_predictions = predictions[..., 1:5] | |
if is_preds: | |
anchors = anchors.reshape(1, len(anchors), 1, 1, 2) | |
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2]) | |
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors | |
scores = torch.sigmoid(predictions[..., 0:1]) | |
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1) | |
else: | |
scores = predictions[..., 0:1] | |
best_class = predictions[..., 5:6] | |
cell_indices = ( | |
torch.arange(S) | |
.repeat(predictions.shape[0], 3, S, 1) | |
.unsqueeze(-1) | |
.to(predictions.device) | |
) | |
x = 1 / S * (box_predictions[..., 0:1] + cell_indices) | |
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4)) | |
w_h = 1 / S * box_predictions[..., 2:4] | |
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6) | |
return converted_bboxes.tolist() | |
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"): | |
""" | |
Video explanation of this function: | |
https://youtu.be/XXYG5ZWtjj0 | |
This function calculates intersection over union (iou) given pred boxes | |
and target boxes. | |
Parameters: | |
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4) | |
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4) | |
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2) | |
Returns: | |
tensor: Intersection over union for all examples | |
""" | |
if box_format == "midpoint": | |
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2 | |
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2 | |
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2 | |
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2 | |
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2 | |
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2 | |
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2 | |
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2 | |
if box_format == "corners": | |
box1_x1 = boxes_preds[..., 0:1] | |
box1_y1 = boxes_preds[..., 1:2] | |
box1_x2 = boxes_preds[..., 2:3] | |
box1_y2 = boxes_preds[..., 3:4] | |
box2_x1 = boxes_labels[..., 0:1] | |
box2_y1 = boxes_labels[..., 1:2] | |
box2_x2 = boxes_labels[..., 2:3] | |
box2_y2 = boxes_labels[..., 3:4] | |
x1 = torch.max(box1_x1, box2_x1) | |
y1 = torch.max(box1_y1, box2_y1) | |
x2 = torch.min(box1_x2, box2_x2) | |
y2 = torch.min(box1_y2, box2_y2) | |
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0) | |
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1)) | |
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1)) | |
return intersection / (box1_area + box2_area - intersection + 1e-6) | |
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"): | |
""" | |
Video explanation of this function: | |
https://youtu.be/YDkjWEN8jNA | |
Does Non Max Suppression given bboxes | |
Parameters: | |
bboxes (list): list of lists containing all bboxes with each bboxes | |
specified as [class_pred, prob_score, x1, y1, x2, y2] | |
iou_threshold (float): threshold where predicted bboxes is correct | |
threshold (float): threshold to remove predicted bboxes (independent of IoU) | |
box_format (str): "midpoint" or "corners" used to specify bboxes | |
Returns: | |
list: bboxes after performing NMS given a specific IoU threshold | |
""" | |
assert type(bboxes) == list | |
bboxes = [box for box in bboxes if box[1] > threshold] | |
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True) | |
bboxes_after_nms = [] | |
while bboxes: | |
chosen_box = bboxes.pop(0) | |
bboxes = [ | |
box | |
for box in bboxes | |
if box[0] != chosen_box[0] | |
or intersection_over_union( | |
torch.tensor(chosen_box[2:]), | |
torch.tensor(box[2:]), | |
box_format=box_format, | |
) | |
< iou_threshold | |
] | |
bboxes_after_nms.append(chosen_box) | |
return bboxes_after_nms | |
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray: | |
"""Plots predicted bounding boxes on the image""" | |
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] | |
im = np.array(image) | |
height, width, _ = im.shape | |
bbox_thick = int(0.6 * (height + width) / 600) | |
# Create a Rectangle patch | |
for box in boxes: | |
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" | |
class_pred = box[0] | |
conf = box[1] | |
box = box[2:] | |
upper_left_x = box[0] - box[2] / 2 | |
upper_left_y = box[1] - box[3] / 2 | |
x1 = int(upper_left_x * width) | |
y1 = int(upper_left_y * height) | |
x2 = x1 + int(box[2] * width) | |
y2 = y1 + int(box[3] * height) | |
cv2.rectangle( | |
image, | |
(x1, y1), (x2, y2), | |
color=colors[int(class_pred)], | |
thickness=bbox_thick | |
) | |
text = f"{class_labels[int(class_pred)]}: {conf:.2f}" | |
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] | |
c3 = (x1 + t_size[0], y1 - t_size[1] - 3) | |
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) | |
cv2.putText( | |
image, | |
text, | |
(x1, y1 - 2), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.7, | |
(0, 0, 0), | |
bbox_thick // 2, | |
lineType=cv2.LINE_AA, | |
) | |
return image | |
class YoloCAM(BaseCAM): | |
def __init__(self, model, target_layers, use_cuda=False, | |
reshape_transform=None): | |
super(YoloCAM, self).__init__(model, | |
target_layers, | |
use_cuda, | |
reshape_transform, | |
uses_gradients=False) | |
def forward(self, | |
input_tensor: torch.Tensor, | |
scaled_anchors: torch.Tensor, | |
targets: List[torch.nn.Module], | |
eigen_smooth: bool = False) -> np.ndarray: | |
if self.cuda: | |
input_tensor = input_tensor.cuda() | |
if self.compute_input_gradient: | |
input_tensor = torch.autograd.Variable(input_tensor, | |
requires_grad=True) | |
outputs = self.activations_and_grads(input_tensor) | |
if targets is None: | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = outputs[i].shape | |
anchor = scaled_anchors[i] | |
boxes_scale_i = cells_to_bboxes( | |
outputs[i], anchor, S=S, is_preds=True | |
) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = non_max_suppression( | |
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint", | |
) | |
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) | |
target_categories = [box[0] for box in nms_boxes] | |
targets = [ClassifierOutputTarget( | |
category) for category in target_categories] | |
if self.uses_gradients: | |
self.model.zero_grad() | |
loss = sum([target(output) | |
for target, output in zip(targets, outputs)]) | |
loss.backward(retain_graph=True) | |
# In most of the saliency attribution papers, the saliency is | |
# computed with a single target layer. | |
# Commonly it is the last convolutional layer. | |
# Here we support passing a list with multiple target layers. | |
# It will compute the saliency image for every image, | |
# and then aggregate them (with a default mean aggregation). | |
# This gives you more flexibility in case you just want to | |
# use all conv layers for example, all Batchnorm layers, | |
# or something else. | |
cam_per_layer = self.compute_cam_per_layer(input_tensor, | |
targets, | |
eigen_smooth) | |
return self.aggregate_multi_layers(cam_per_layer) | |
def get_cam_image(self, | |
input_tensor, | |
target_layer, | |
target_category, | |
activations, | |
grads, | |
eigen_smooth): | |
return get_2d_projection(activations) | |