Spaces:
Running
Running
from typing import List | |
import cv2 | |
import torch | |
import numpy as np | |
import src.config as config | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from src.model_yolov3 import YOLOv3 | |
from src.utils import cells_to_bboxes, non_max_suppression, draw_predictions, YoloCAM | |
model = YOLOv3(num_classes=20) | |
weights_path = "/home/user/app/Final_trained_model.pth" | |
ckpt = torch.load(weights_path, map_location="cpu") | |
model.load_state_dict(ckpt) | |
model.eval() | |
print("[x] Model Loaded..") | |
scaled_anchors = ( | |
torch.tensor(config.ANCHORS) | |
* torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2) | |
).to(config.DEVICE) | |
cam = YoloCAM(model=model, target_layers=[model.layers[-2]], use_cuda=False) | |
def predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.4, show_cam: bool = False, transparency: float = 0.5) -> List[np.ndarray]: | |
with torch.no_grad(): | |
transformed_image = config.transforms(image=image)["image"].unsqueeze(0) | |
output = model(transformed_image) | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = output[i].shape | |
anchor = scaled_anchors[i] | |
boxes_scale_i = cells_to_bboxes( | |
output[i], anchor, S=S, is_preds=True | |
) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = non_max_suppression( | |
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", | |
) | |
plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES) | |
if not show_cam: | |
return [plot_img] | |
grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :] | |
img = cv2.resize(image, (416, 416)) | |
img = np.float32(img) / 255 | |
cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency) | |
return [plot_img, cam_image] | |