Spaces:
Runtime error
Runtime error
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, UNet2DConditionModel, LMSDiscreteScheduler | |
from tqdm.auto import tqdm | |
from torch import autocast | |
from PIL import Image | |
from matplotlib import pyplot as plt | |
import numpy | |
from torchvision import transforms as tfms | |
import shutil | |
# For video display: | |
import cv2 | |
from IPython.display import HTML | |
from base64 import b64encode | |
import os | |
from utils import color_loss,pil_to_latent,sketch_loss | |
# Set device | |
torch_device = "cpu" | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device) | |
scheduler.set_timesteps(15) | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
position_embeddings = pos_emb_layer(position_ids) | |
def get_output_embeds(input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(torch_device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready! | |
return output | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) | |
# def latents_to_pil(latents): | |
# # bath of latents -> list of images | |
# latents = (1 / 0.18215) * latents | |
# with torch.no_grad(): | |
# image = vae.decode(latents).sample | |
# image = (image / 2 + 0.5).clamp(0, 1) | |
# image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
# images = (image * 255).round().astype("uint8") | |
# pil_images = [Image.fromarray(image) for image in images] | |
# return pil_images | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents) | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def generate_with_embs(text_embeddings,text_input, seed,num_inference_steps): | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = num_inference_steps # Number of denoising steps | |
guidance_scale = 7.5 # Scale for classifier-free guidance | |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
# latents = latents * scheduler.init_noise_sigma | |
latents = latents * scheduler.sigmas[0] # Need to scale to match k | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
#latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
#latents = scheduler.step(noise_pred, t, latents).prev_sample | |
latents = scheduler.step(noise_pred, i, latents)["prev_sample"] | |
return latents_to_pil(latents)[0] | |
def generate_with_prompt_style(prompt, style, num_of_inf_steps=50,seed = 42): | |
prompt = prompt + ' in style of s' | |
embed = torch.load(style) | |
print("Keys",embed.keys()) | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
# for t in text_input['input_ids'][0][:20]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>' | |
# print(t, tokenizer.decoder.get(int(t))) | |
input_ids = text_input.input_ids.to(torch_device) | |
token_embeddings = token_emb_layer(input_ids) | |
# The new embedding - our special birb word | |
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device) | |
# Insert this into the token embeddings | |
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = get_output_embeds(input_embeddings) | |
# And generate an image with this: | |
return generate_with_embs(modified_output_embeddings, text_input, seed,num_of_inf_steps) | |
# prompt = 'A man sipping wine wearing a spacesuit on the moon' | |
# image = generate_with_prompt_style(prompt, '/home/deepanshudashora/Documents/Stable_Diffusion/caitlin_fairchild.bin') | |
# image.save("output.png") |