Stable_Diffusion / utils.py
wgetdd's picture
Initial Commit
c324d8c
raw
history blame
2.61 kB
from torchvision.transforms import functional as F
from torchvision import transforms as tfms
from PIL import Image, ImageEnhance
#from legofy import legofy_image
import numpy as np
from torchvision.transforms import functional as F
from PIL import Image, ImageEnhance
import torch
import cv2
to_tensor_tfm = tfms.ToTensor()
torch_device = "cpu"
def pil_to_latent(input_im,vae):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(to_tensor_tfm(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.mode() # or .mean or .sample
def latents_to_pil(latents,vae):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents)
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def color_loss(images,color):
# Scale the coming color
red,green,blue = (color[0]/255)*0.9,(color[1]/255)*0.9,(color[2]/255)*0.9
red_chennel_error = torch.abs(images[:,0, :, :] - red).mean()
green_chennel_error = torch.abs(images[:,1, :, :] - green).mean()
blue_chennel_error = torch.abs(images[:,2, :, :] - blue).mean()
print(red_chennel_error, green_chennel_error, blue_chennel_error)
error = red_chennel_error + green_chennel_error + blue_chennel_error
return error
import torch
from PIL import Image, ImageOps, ImageFilter
import torchvision.transforms as transforms
def sketch_loss(image):
# Convert PyTorch tensor to a PIL image
to_pil = transforms.ToPILImage()
pil_image = to_pil(image[0])
# Convert the PIL image to grayscale
gray_image = ImageOps.grayscale(pil_image)
# Apply an inverted pencil sketch effect
inverted_image = ImageOps.invert(gray_image)
# Apply a blur effect to smooth the sketch
pencil_sketch = inverted_image.filter(ImageFilter.GaussianBlur(radius=5))
# Convert the PIL image back to a PyTorch tensor
to_tensor = transforms.ToTensor()
sketch_tensor = to_tensor(pencil_sketch).unsqueeze(0)
sketch_tensor.requires_grad = True # Enable gradients
#if num_channels == 3:
# # If the input was originally in CHW format (3 channels), permute it to CHW
sketch_tensor = sketch_tensor.permute(0, 3, 1, 2)
# Calculate the loss based on the watercolour_image tensor
loss = torch.abs(sketch_tensor - 0.9).mean() # Modify 0.5 to your desired threshold
return loss