Spaces:
Runtime error
Runtime error
from torchvision.transforms import functional as F | |
from torchvision import transforms as tfms | |
from PIL import Image, ImageEnhance | |
#from legofy import legofy_image | |
import numpy as np | |
from torchvision.transforms import functional as F | |
from PIL import Image, ImageEnhance | |
import torch | |
import cv2 | |
to_tensor_tfm = tfms.ToTensor() | |
torch_device = "cpu" | |
def pil_to_latent(input_im,vae): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(to_tensor_tfm(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling | |
return 0.18215 * latent.mode() # or .mean or .sample | |
def latents_to_pil(latents,vae): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents) | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def color_loss(images,color): | |
# Scale the coming color | |
red,green,blue = (color[0]/255)*0.9,(color[1]/255)*0.9,(color[2]/255)*0.9 | |
red_chennel_error = torch.abs(images[:,0, :, :] - red).mean() | |
green_chennel_error = torch.abs(images[:,1, :, :] - green).mean() | |
blue_chennel_error = torch.abs(images[:,2, :, :] - blue).mean() | |
print(red_chennel_error, green_chennel_error, blue_chennel_error) | |
error = red_chennel_error + green_chennel_error + blue_chennel_error | |
return error | |
import torch | |
from PIL import Image, ImageOps, ImageFilter | |
import torchvision.transforms as transforms | |
def sketch_loss(image): | |
# Convert PyTorch tensor to a PIL image | |
to_pil = transforms.ToPILImage() | |
pil_image = to_pil(image[0]) | |
# Convert the PIL image to grayscale | |
gray_image = ImageOps.grayscale(pil_image) | |
# Apply an inverted pencil sketch effect | |
inverted_image = ImageOps.invert(gray_image) | |
# Apply a blur effect to smooth the sketch | |
pencil_sketch = inverted_image.filter(ImageFilter.GaussianBlur(radius=5)) | |
# Convert the PIL image back to a PyTorch tensor | |
to_tensor = transforms.ToTensor() | |
sketch_tensor = to_tensor(pencil_sketch).unsqueeze(0) | |
sketch_tensor.requires_grad = True # Enable gradients | |
#if num_channels == 3: | |
# # If the input was originally in CHW format (3 channels), permute it to CHW | |
sketch_tensor = sketch_tensor.permute(0, 3, 1, 2) | |
# Calculate the loss based on the watercolour_image tensor | |
loss = torch.abs(sketch_tensor - 0.9).mean() # Modify 0.5 to your desired threshold | |
return loss |