wfranco's picture
Update app.py
a1e0a35
raw
history blame
5.04 kB
#!pip install gradio
import gradio as gr
def read_pdf(pdf_path):
# create a PDF file object
pdfFileObj = open(pdf_path, 'rb')
# create a PDF reader object
pdfReader = PyPDF2.PdfReader(pdfFileObj)
# Create the dictionary to extract text from each page
text_per_page = {}
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(pdf_path)):
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReader.pages[pagenum]
page_text = []
line_format = []
text_from_images = []
text_from_tables = []
page_content = []
# Initialize the number of the examined tables
table_num = 0
first_element= True
table_extraction_flag= False
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
page_tables = pdf.pages[pagenum]
# Find the number of tables on the page
tables = page_tables.find_tables()
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the elements as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i, component in enumerate(page_elements):
# Extract the position of the top side of the element in the PDF
pos = component[0]
# Extract the element of the page layout
element = component[1]
# Check if the element is a text element
if isinstance(element, LTTextContainer):
# Check if the text appeared in a table
if table_extraction_flag == False:
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
else:
# Omit the text that appeared in a table
pass
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as the value of the page key
text_per_page[dctkey] = [page_text, line_format, text_from_images, text_from_tables, page_content]
# Closing the pdf file object
pdfFileObj.close()
return text_per_page
pdf_path = '/content/Article 11 Hidden Technical Debt in Machine Learning Systems.pdf'
text_per_page = read_pdf(pdf_path)
Page_0 = text_per_page['Page_0']
def nested_list_to_string(nested_list):
result = ''
for element in nested_list:
if isinstance(element, list): # Check if the element is a list
result += nested_list_to_string(element) # Recursively process the list
elif isinstance(element, str): # Check if the element is a string
result += element # Append the string to the result
return result
Page_0 = text_per_page['Page_0']
string_result = nested_list_to_string(Page_0)
def extract_abstract(page_0):
def nested_list_to_string(nested_list):
result = ''
for element in nested_list:
if isinstance(element, list): # Check if the element is a list
result += nested_list_to_string(element) # Recursively process the list
elif isinstance(element, str): # Check if the element is a string
result += element # Append the string to the result
return result
# Convert the nested list into a single string
full_text = nested_list_to_string(page_0)
# Find the start of the 'Abstract' section and the end of it (start of 'Introduction')
start_index = full_text.find('Abstract')
end_index = full_text.find('Introduction')
# If both 'Abstract' and 'Introduction' are found, extract the text in between
if start_index != -1 and end_index != -1:
# Extract the text and remove the word 'Abstract'
abstract_text = full_text[start_index + len('Abstract'):end_index]
return abstract_text.strip()
else:
return "Abstract or Introduction section not found."
# Example usage
Page_0 = text_per_page['Page_0']
abstract_text = extract_abstract(Page_0)
wall_of_text = abstract_text
result = summarizer(
wall_of_text,
min_length=1,
max_length=30,
no_repeat_ngram_size=3,
encoder_no_repeat_ngram_size=3,
repetition_penalty=3.5,
num_beams=4,
early_stopping=True,
)
# Access the first element of the list (which is the dictionary) and then the value of 'summary_text'
summary_string = result[0]['summary_text']
print(summary_string)
app = gra.Interface(fn = user_greeting, inputs=summary_string, outputs=summary_string)
app.launch()