Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
import numpy as np
|
5 |
+
from bark import generate_audio, preload_models
|
6 |
+
from scipy.io.wavfile import write as write_wav
|
7 |
+
import torch
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Preload models if needed
|
12 |
+
preload_models()
|
13 |
+
|
14 |
+
def summarize_abstract_from_pdf(pdf_file):
|
15 |
+
# Function to extract and summarize the abstract from a PDF
|
16 |
+
abstract_string = 'abstract'
|
17 |
+
found_abstract = False
|
18 |
+
intro_string = 'introduction'
|
19 |
+
extracted_text_string = ""
|
20 |
+
|
21 |
+
# Read the PDF and extract text from the first page
|
22 |
+
reader = PdfReader(pdf_file)
|
23 |
+
text = reader.pages[0].extract_text()
|
24 |
+
|
25 |
+
for line in text.splitlines():
|
26 |
+
lower_line = line.lower()
|
27 |
+
if lower_line.strip() == abstract_string:
|
28 |
+
found_abstract = True
|
29 |
+
elif "1" in lower_line.strip() and intro_string in lower_line.strip():
|
30 |
+
found_abstract = False
|
31 |
+
|
32 |
+
if found_abstract:
|
33 |
+
extracted_text_string += line + " "
|
34 |
+
|
35 |
+
extracted_text_string = extracted_text_string.replace("Abstract", "")
|
36 |
+
|
37 |
+
# Use Hugging Face summarization pipeline
|
38 |
+
summarizer = pipeline("summarization", "pszemraj/led-base-book-summary", device=0 if torch.cuda.is_available() else -1)
|
39 |
+
summarized_abstract = summarizer(extracted_text_string, min_length=16, max_length=150, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, early_stopping=True)
|
40 |
+
return summarized_abstract[0]['summary_text']
|
41 |
+
|
42 |
+
def generate_audio_func(pdf_file):
|
43 |
+
text_prompt = summarize_abstract_from_pdf(pdf_file)
|
44 |
+
audio_array = generate_audio(text_prompt)
|
45 |
+
|
46 |
+
# Create a temporary WAV file to save the audio
|
47 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file:
|
48 |
+
write_wav(temp_wav_file.name, 22050, (audio_array * 32767).astype(np.int16))
|
49 |
+
return temp_wav_file.name
|
50 |
+
|
51 |
+
# Define the Gradio interface
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=generate_audio_func,
|
54 |
+
inputs=gr.inputs.File(file_types=["pdf"]),
|
55 |
+
outputs=gr.outputs.Audio(type="file"),
|
56 |
+
title="PDF to Audio Converter",
|
57 |
+
description="Convert text from a PDF file to audio. Upload a PDF file with an abstract to get started."
|
58 |
+
)
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
demo.launch()
|