|
import torch |
|
import contextlib |
|
import math |
|
|
|
from ldm_patched.modules import model_management |
|
from ldm_patched.ldm.util import instantiate_from_config |
|
from ldm_patched.ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine |
|
import yaml |
|
|
|
import ldm_patched.modules.utils |
|
|
|
from . import clip_vision |
|
from . import gligen |
|
from . import diffusers_convert |
|
from . import model_base |
|
from . import model_detection |
|
|
|
from . import sd1_clip |
|
from . import sd2_clip |
|
from . import sdxl_clip |
|
|
|
import ldm_patched.modules.model_patcher |
|
import ldm_patched.modules.lora |
|
import ldm_patched.t2ia.adapter |
|
import ldm_patched.modules.supported_models_base |
|
import ldm_patched.taesd.taesd |
|
|
|
def load_model_weights(model, sd): |
|
m, u = model.load_state_dict(sd, strict=False) |
|
m = set(m) |
|
unexpected_keys = set(u) |
|
|
|
k = list(sd.keys()) |
|
for x in k: |
|
if x not in unexpected_keys: |
|
w = sd.pop(x) |
|
del w |
|
if len(m) > 0: |
|
print("extra", m) |
|
return model |
|
|
|
def load_clip_weights(model, sd): |
|
k = list(sd.keys()) |
|
for x in k: |
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
sd[y] = sd.pop(x) |
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: |
|
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] |
|
if ids.dtype == torch.float32: |
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
sd = ldm_patched.modules.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) |
|
return load_model_weights(model, sd) |
|
|
|
|
|
def load_lora_for_models(model, clip, lora, strength_model, strength_clip): |
|
key_map = {} |
|
if model is not None: |
|
key_map = ldm_patched.modules.lora.model_lora_keys_unet(model.model, key_map) |
|
if clip is not None: |
|
key_map = ldm_patched.modules.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) |
|
|
|
loaded = ldm_patched.modules.lora.load_lora(lora, key_map) |
|
if model is not None: |
|
new_modelpatcher = model.clone() |
|
k = new_modelpatcher.add_patches(loaded, strength_model) |
|
else: |
|
k = () |
|
new_modelpatcher = None |
|
|
|
if clip is not None: |
|
new_clip = clip.clone() |
|
k1 = new_clip.add_patches(loaded, strength_clip) |
|
else: |
|
k1 = () |
|
new_clip = None |
|
k = set(k) |
|
k1 = set(k1) |
|
for x in loaded: |
|
if (x not in k) and (x not in k1): |
|
print("NOT LOADED", x) |
|
|
|
return (new_modelpatcher, new_clip) |
|
|
|
|
|
class CLIP: |
|
def __init__(self, target=None, embedding_directory=None, no_init=False): |
|
if no_init: |
|
return |
|
params = target.params.copy() |
|
clip = target.clip |
|
tokenizer = target.tokenizer |
|
|
|
load_device = model_management.text_encoder_device() |
|
offload_device = model_management.text_encoder_offload_device() |
|
params['device'] = offload_device |
|
params['dtype'] = model_management.text_encoder_dtype(load_device) |
|
|
|
self.cond_stage_model = clip(**(params)) |
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory) |
|
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) |
|
self.layer_idx = None |
|
|
|
def clone(self): |
|
n = CLIP(no_init=True) |
|
n.patcher = self.patcher.clone() |
|
n.cond_stage_model = self.cond_stage_model |
|
n.tokenizer = self.tokenizer |
|
n.layer_idx = self.layer_idx |
|
return n |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
return self.patcher.add_patches(patches, strength_patch, strength_model) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.layer_idx = layer_idx |
|
|
|
def tokenize(self, text, return_word_ids=False): |
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids) |
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False): |
|
if self.layer_idx is not None: |
|
self.cond_stage_model.clip_layer(self.layer_idx) |
|
else: |
|
self.cond_stage_model.reset_clip_layer() |
|
|
|
self.load_model() |
|
cond, pooled = self.cond_stage_model.encode_token_weights(tokens) |
|
if return_pooled: |
|
return cond, pooled |
|
return cond |
|
|
|
def encode(self, text): |
|
tokens = self.tokenize(text) |
|
return self.encode_from_tokens(tokens) |
|
|
|
def load_sd(self, sd): |
|
return self.cond_stage_model.load_sd(sd) |
|
|
|
def get_sd(self): |
|
return self.cond_stage_model.state_dict() |
|
|
|
def load_model(self): |
|
model_management.load_model_gpu(self.patcher) |
|
return self.patcher |
|
|
|
def get_key_patches(self): |
|
return self.patcher.get_key_patches() |
|
|
|
class VAE: |
|
def __init__(self, sd=None, device=None, config=None, dtype=None): |
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): |
|
sd = diffusers_convert.convert_vae_state_dict(sd) |
|
|
|
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) |
|
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) |
|
|
|
if config is None: |
|
if "decoder.mid.block_1.mix_factor" in sd: |
|
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
decoder_config = encoder_config.copy() |
|
decoder_config["video_kernel_size"] = [3, 1, 1] |
|
decoder_config["alpha"] = 0.0 |
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, |
|
encoder_config={'target': "ldm_patched.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, |
|
decoder_config={'target': "ldm_patched.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) |
|
elif "taesd_decoder.1.weight" in sd: |
|
self.first_stage_model = ldm_patched.taesd.taesd.TAESD() |
|
else: |
|
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) |
|
else: |
|
self.first_stage_model = AutoencoderKL(**(config['params'])) |
|
self.first_stage_model = self.first_stage_model.eval() |
|
|
|
m, u = self.first_stage_model.load_state_dict(sd, strict=False) |
|
if len(m) > 0: |
|
print("Missing VAE keys", m) |
|
|
|
if len(u) > 0: |
|
print("Leftover VAE keys", u) |
|
|
|
if device is None: |
|
device = model_management.vae_device() |
|
self.device = device |
|
offload_device = model_management.vae_offload_device() |
|
if dtype is None: |
|
dtype = model_management.vae_dtype() |
|
self.vae_dtype = dtype |
|
self.first_stage_model.to(self.vae_dtype) |
|
self.output_device = model_management.intermediate_device() |
|
|
|
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) |
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
steps = samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) |
|
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = ldm_patched.modules.utils.ProgressBar(steps) |
|
|
|
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float() |
|
output = torch.clamp(( |
|
(ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) + |
|
ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) + |
|
ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar)) |
|
/ 3.0) / 2.0, min=0.0, max=1.0) |
|
return output |
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
steps = pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) |
|
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = ldm_patched.modules.utils.ProgressBar(steps) |
|
|
|
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float() |
|
samples = ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar) |
|
samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar) |
|
samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar) |
|
samples /= 3.0 |
|
return samples |
|
|
|
def decode(self, samples_in): |
|
try: |
|
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) |
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / memory_used) |
|
batch_number = max(1, batch_number) |
|
|
|
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device=self.output_device) |
|
for x in range(0, samples_in.shape[0], batch_number): |
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) |
|
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0) |
|
except model_management.OOM_EXCEPTION as e: |
|
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") |
|
pixel_samples = self.decode_tiled_(samples_in) |
|
|
|
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1) |
|
return pixel_samples |
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
model_management.load_model_gpu(self.patcher) |
|
output = self.decode_tiled_(samples, tile_x, tile_y, overlap) |
|
return output.movedim(1,-1) |
|
|
|
def encode(self, pixel_samples): |
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
try: |
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) |
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / memory_used) |
|
batch_number = max(1, batch_number) |
|
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device=self.output_device) |
|
for x in range(0, pixel_samples.shape[0], batch_number): |
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device) |
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float() |
|
|
|
except model_management.OOM_EXCEPTION as e: |
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") |
|
samples = self.encode_tiled_(pixel_samples) |
|
|
|
return samples |
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
model_management.load_model_gpu(self.patcher) |
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) |
|
return samples |
|
|
|
def get_sd(self): |
|
return self.first_stage_model.state_dict() |
|
|
|
class StyleModel: |
|
def __init__(self, model, device="cpu"): |
|
self.model = model |
|
|
|
def get_cond(self, input): |
|
return self.model(input.last_hidden_state) |
|
|
|
|
|
def load_style_model(ckpt_path): |
|
model_data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True) |
|
keys = model_data.keys() |
|
if "style_embedding" in keys: |
|
model = ldm_patched.t2ia.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) |
|
else: |
|
raise Exception("invalid style model {}".format(ckpt_path)) |
|
model.load_state_dict(model_data) |
|
return StyleModel(model) |
|
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None): |
|
clip_data = [] |
|
for p in ckpt_paths: |
|
clip_data.append(ldm_patched.modules.utils.load_torch_file(p, safe_load=True)) |
|
|
|
class EmptyClass: |
|
pass |
|
|
|
for i in range(len(clip_data)): |
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: |
|
clip_data[i] = ldm_patched.modules.utils.transformers_convert(clip_data[i], "", "text_model.", 32) |
|
|
|
clip_target = EmptyClass() |
|
clip_target.params = {} |
|
if len(clip_data) == 1: |
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]: |
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]: |
|
clip_target.clip = sd2_clip.SD2ClipModel |
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer |
|
else: |
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
else: |
|
clip_target.clip = sdxl_clip.SDXLClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
for c in clip_data: |
|
m, u = clip.load_sd(c) |
|
if len(m) > 0: |
|
print("clip missing:", m) |
|
|
|
if len(u) > 0: |
|
print("clip unexpected:", u) |
|
return clip |
|
|
|
def load_gligen(ckpt_path): |
|
data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True) |
|
model = gligen.load_gligen(data) |
|
if model_management.should_use_fp16(): |
|
model = model.half() |
|
return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) |
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): |
|
|
|
if config is None: |
|
with open(config_path, 'r') as stream: |
|
config = yaml.safe_load(stream) |
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
vae_config = model_config_params['first_stage_config'] |
|
|
|
fp16 = False |
|
if "unet_config" in model_config_params: |
|
if "params" in model_config_params["unet_config"]: |
|
unet_config = model_config_params["unet_config"]["params"] |
|
if "use_fp16" in unet_config: |
|
fp16 = unet_config.pop("use_fp16") |
|
if fp16: |
|
unet_config["dtype"] = torch.float16 |
|
|
|
noise_aug_config = None |
|
if "noise_aug_config" in model_config_params: |
|
noise_aug_config = model_config_params["noise_aug_config"] |
|
|
|
model_type = model_base.ModelType.EPS |
|
|
|
if "parameterization" in model_config_params: |
|
if model_config_params["parameterization"] == "v": |
|
model_type = model_base.ModelType.V_PREDICTION |
|
|
|
clip = None |
|
vae = None |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
if state_dict is None: |
|
state_dict = ldm_patched.modules.utils.load_torch_file(ckpt_path) |
|
|
|
class EmptyClass: |
|
pass |
|
|
|
model_config = ldm_patched.modules.supported_models_base.BASE({}) |
|
|
|
from . import latent_formats |
|
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor) |
|
model_config.unet_config = model_detection.convert_config(unet_config) |
|
|
|
if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"): |
|
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type) |
|
else: |
|
model = model_base.BaseModel(model_config, model_type=model_type) |
|
|
|
if config['model']["target"].endswith("LatentInpaintDiffusion"): |
|
model.set_inpaint() |
|
|
|
if fp16: |
|
model = model.half() |
|
|
|
offload_device = model_management.unet_offload_device() |
|
model = model.to(offload_device) |
|
model.load_model_weights(state_dict, "model.diffusion_model.") |
|
|
|
if output_vae: |
|
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True) |
|
vae = VAE(sd=vae_sd, config=vae_config) |
|
|
|
if output_clip: |
|
w = WeightsLoader() |
|
clip_target = EmptyClass() |
|
clip_target.params = clip_config.get("params", {}) |
|
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"): |
|
clip_target.clip = sd2_clip.SD2ClipModel |
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model.clip_h |
|
elif clip_config["target"].endswith("FrozenCLIPEmbedder"): |
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model.clip_l |
|
load_clip_weights(w, state_dict) |
|
|
|
return (ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae) |
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): |
|
sd = ldm_patched.modules.utils.load_torch_file(ckpt_path) |
|
sd_keys = sd.keys() |
|
clip = None |
|
clipvision = None |
|
vae = None |
|
model = None |
|
model_patcher = None |
|
clip_target = None |
|
|
|
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.") |
|
unet_dtype = model_management.unet_dtype(model_params=parameters) |
|
load_device = model_management.get_torch_device() |
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype) |
|
model_config.set_manual_cast(manual_cast_dtype) |
|
|
|
if model_config is None: |
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) |
|
|
|
if model_config.clip_vision_prefix is not None: |
|
if output_clipvision: |
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) |
|
|
|
if output_model: |
|
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) |
|
offload_device = model_management.unet_offload_device() |
|
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device) |
|
model.load_model_weights(sd, "model.diffusion_model.") |
|
|
|
if output_vae: |
|
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True) |
|
vae_sd = model_config.process_vae_state_dict(vae_sd) |
|
vae = VAE(sd=vae_sd) |
|
|
|
if output_clip: |
|
w = WeightsLoader() |
|
clip_target = model_config.clip_target() |
|
if clip_target is not None: |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
sd = model_config.process_clip_state_dict(sd) |
|
load_model_weights(w, sd) |
|
|
|
left_over = sd.keys() |
|
if len(left_over) > 0: |
|
print("left over keys:", left_over) |
|
|
|
if output_model: |
|
model_patcher = ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device) |
|
if inital_load_device != torch.device("cpu"): |
|
print("loaded straight to GPU") |
|
model_management.load_model_gpu(model_patcher) |
|
|
|
return (model_patcher, clip, vae, clipvision) |
|
|
|
|
|
def load_unet_state_dict(sd): |
|
parameters = ldm_patched.modules.utils.calculate_parameters(sd) |
|
unet_dtype = model_management.unet_dtype(model_params=parameters) |
|
load_device = model_management.get_torch_device() |
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) |
|
|
|
if "input_blocks.0.0.weight" in sd: |
|
model_config = model_detection.model_config_from_unet(sd, "", unet_dtype) |
|
if model_config is None: |
|
return None |
|
new_sd = sd |
|
|
|
else: |
|
model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype) |
|
if model_config is None: |
|
return None |
|
|
|
diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(model_config.unet_config) |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in sd: |
|
new_sd[diffusers_keys[k]] = sd.pop(k) |
|
else: |
|
print(diffusers_keys[k], k) |
|
offload_device = model_management.unet_offload_device() |
|
model_config.set_manual_cast(manual_cast_dtype) |
|
model = model_config.get_model(new_sd, "") |
|
model = model.to(offload_device) |
|
model.load_model_weights(new_sd, "") |
|
left_over = sd.keys() |
|
if len(left_over) > 0: |
|
print("left over keys in unet:", left_over) |
|
return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) |
|
|
|
def load_unet(unet_path): |
|
sd = ldm_patched.modules.utils.load_torch_file(unet_path) |
|
model = load_unet_state_dict(sd) |
|
if model is None: |
|
print("ERROR UNSUPPORTED UNET", unet_path) |
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) |
|
return model |
|
|
|
def save_checkpoint(output_path, model, clip, vae, metadata=None): |
|
model_management.load_models_gpu([model, clip.load_model()]) |
|
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd()) |
|
ldm_patched.modules.utils.save_torch_file(sd, output_path, metadata=metadata) |
|
|