|
import torch |
|
import copy |
|
import inspect |
|
|
|
import ldm_patched.modules.utils |
|
import ldm_patched.modules.model_management |
|
|
|
class ModelPatcher: |
|
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): |
|
self.size = size |
|
self.model = model |
|
self.patches = {} |
|
self.backup = {} |
|
self.object_patches = {} |
|
self.object_patches_backup = {} |
|
self.model_options = {"transformer_options":{}} |
|
self.model_size() |
|
self.load_device = load_device |
|
self.offload_device = offload_device |
|
if current_device is None: |
|
self.current_device = self.offload_device |
|
else: |
|
self.current_device = current_device |
|
|
|
self.weight_inplace_update = weight_inplace_update |
|
|
|
def model_size(self): |
|
if self.size > 0: |
|
return self.size |
|
model_sd = self.model.state_dict() |
|
self.size = ldm_patched.modules.model_management.module_size(self.model) |
|
self.model_keys = set(model_sd.keys()) |
|
return self.size |
|
|
|
def clone(self): |
|
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update) |
|
n.patches = {} |
|
for k in self.patches: |
|
n.patches[k] = self.patches[k][:] |
|
|
|
n.object_patches = self.object_patches.copy() |
|
n.model_options = copy.deepcopy(self.model_options) |
|
n.model_keys = self.model_keys |
|
return n |
|
|
|
def is_clone(self, other): |
|
if hasattr(other, 'model') and self.model is other.model: |
|
return True |
|
return False |
|
|
|
def memory_required(self, input_shape): |
|
return self.model.memory_required(input_shape=input_shape) |
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): |
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3: |
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) |
|
else: |
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function |
|
if disable_cfg1_optimization: |
|
self.model_options["disable_cfg1_optimization"] = True |
|
|
|
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): |
|
self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] |
|
if disable_cfg1_optimization: |
|
self.model_options["disable_cfg1_optimization"] = True |
|
|
|
def set_model_unet_function_wrapper(self, unet_wrapper_function): |
|
self.model_options["model_function_wrapper"] = unet_wrapper_function |
|
|
|
def set_model_patch(self, patch, name): |
|
to = self.model_options["transformer_options"] |
|
if "patches" not in to: |
|
to["patches"] = {} |
|
to["patches"][name] = to["patches"].get(name, []) + [patch] |
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): |
|
to = self.model_options["transformer_options"] |
|
if "patches_replace" not in to: |
|
to["patches_replace"] = {} |
|
if name not in to["patches_replace"]: |
|
to["patches_replace"][name] = {} |
|
if transformer_index is not None: |
|
block = (block_name, number, transformer_index) |
|
else: |
|
block = (block_name, number) |
|
to["patches_replace"][name][block] = patch |
|
|
|
def set_model_attn1_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_patch") |
|
|
|
def set_model_attn2_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_patch") |
|
|
|
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): |
|
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) |
|
|
|
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): |
|
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) |
|
|
|
def set_model_attn1_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_output_patch") |
|
|
|
def set_model_attn2_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_output_patch") |
|
|
|
def set_model_input_block_patch(self, patch): |
|
self.set_model_patch(patch, "input_block_patch") |
|
|
|
def set_model_input_block_patch_after_skip(self, patch): |
|
self.set_model_patch(patch, "input_block_patch_after_skip") |
|
|
|
def set_model_output_block_patch(self, patch): |
|
self.set_model_patch(patch, "output_block_patch") |
|
|
|
def add_object_patch(self, name, obj): |
|
self.object_patches[name] = obj |
|
|
|
def model_patches_to(self, device): |
|
to = self.model_options["transformer_options"] |
|
if "patches" in to: |
|
patches = to["patches"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for i in range(len(patch_list)): |
|
if hasattr(patch_list[i], "to"): |
|
patch_list[i] = patch_list[i].to(device) |
|
if "patches_replace" in to: |
|
patches = to["patches_replace"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for k in patch_list: |
|
if hasattr(patch_list[k], "to"): |
|
patch_list[k] = patch_list[k].to(device) |
|
if "model_function_wrapper" in self.model_options: |
|
wrap_func = self.model_options["model_function_wrapper"] |
|
if hasattr(wrap_func, "to"): |
|
self.model_options["model_function_wrapper"] = wrap_func.to(device) |
|
|
|
def model_dtype(self): |
|
if hasattr(self.model, "get_dtype"): |
|
return self.model.get_dtype() |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
p = set() |
|
for k in patches: |
|
if k in self.model_keys: |
|
p.add(k) |
|
current_patches = self.patches.get(k, []) |
|
current_patches.append((strength_patch, patches[k], strength_model)) |
|
self.patches[k] = current_patches |
|
|
|
return list(p) |
|
|
|
def get_key_patches(self, filter_prefix=None): |
|
ldm_patched.modules.model_management.unload_model_clones(self) |
|
model_sd = self.model_state_dict() |
|
p = {} |
|
for k in model_sd: |
|
if filter_prefix is not None: |
|
if not k.startswith(filter_prefix): |
|
continue |
|
if k in self.patches: |
|
p[k] = [model_sd[k]] + self.patches[k] |
|
else: |
|
p[k] = (model_sd[k],) |
|
return p |
|
|
|
def model_state_dict(self, filter_prefix=None): |
|
sd = self.model.state_dict() |
|
keys = list(sd.keys()) |
|
if filter_prefix is not None: |
|
for k in keys: |
|
if not k.startswith(filter_prefix): |
|
sd.pop(k) |
|
return sd |
|
|
|
def patch_model(self, device_to=None): |
|
for k in self.object_patches: |
|
old = getattr(self.model, k) |
|
if k not in self.object_patches_backup: |
|
self.object_patches_backup[k] = old |
|
setattr(self.model, k, self.object_patches[k]) |
|
|
|
model_sd = self.model_state_dict() |
|
for key in self.patches: |
|
if key not in model_sd: |
|
print("could not patch. key doesn't exist in model:", key) |
|
continue |
|
|
|
weight = model_sd[key] |
|
|
|
inplace_update = self.weight_inplace_update |
|
|
|
if key not in self.backup: |
|
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) |
|
|
|
if device_to is not None: |
|
temp_weight = ldm_patched.modules.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) |
|
else: |
|
temp_weight = weight.to(torch.float32, copy=True) |
|
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) |
|
if inplace_update: |
|
ldm_patched.modules.utils.copy_to_param(self.model, key, out_weight) |
|
else: |
|
ldm_patched.modules.utils.set_attr(self.model, key, out_weight) |
|
del temp_weight |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to |
|
|
|
return self.model |
|
|
|
def calculate_weight(self, patches, weight, key): |
|
for p in patches: |
|
alpha = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
|
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (self.calculate_weight(v[1:], v[0].clone(), key), ) |
|
|
|
if len(v) == 1: |
|
patch_type = "diff" |
|
elif len(v) == 2: |
|
patch_type = v[0] |
|
v = v[1] |
|
|
|
if patch_type == "diff": |
|
w1 = v[0] |
|
if alpha != 0.0: |
|
if w1.shape != weight.shape: |
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) |
|
else: |
|
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype) |
|
elif patch_type == "lora": |
|
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32) |
|
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32) |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
if v[3] is not None: |
|
|
|
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32) |
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] |
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) |
|
try: |
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "lokr": |
|
w1 = v[0] |
|
w2 = v[1] |
|
w1_a = v[3] |
|
w1_b = v[4] |
|
w2_a = v[5] |
|
w2_b = v[6] |
|
t2 = v[7] |
|
dim = None |
|
|
|
if w1 is None: |
|
dim = w1_b.shape[0] |
|
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32)) |
|
else: |
|
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32) |
|
|
|
if w2 is None: |
|
dim = w2_b.shape[0] |
|
if t2 is None: |
|
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32)) |
|
else: |
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32)) |
|
else: |
|
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32) |
|
|
|
if len(w2.shape) == 4: |
|
w1 = w1.unsqueeze(2).unsqueeze(2) |
|
if v[2] is not None and dim is not None: |
|
alpha *= v[2] / dim |
|
|
|
try: |
|
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "loha": |
|
w1a = v[0] |
|
w1b = v[1] |
|
if v[2] is not None: |
|
alpha *= v[2] / w1b.shape[0] |
|
w2a = v[3] |
|
w2b = v[4] |
|
if v[5] is not None: |
|
t1 = v[5] |
|
t2 = v[6] |
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32)) |
|
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32)) |
|
else: |
|
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32)) |
|
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32)) |
|
|
|
try: |
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "glora": |
|
if v[4] is not None: |
|
alpha *= v[4] / v[0].shape[0] |
|
|
|
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) |
|
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) |
|
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) |
|
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) |
|
|
|
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype) |
|
else: |
|
print("patch type not recognized", patch_type, key) |
|
|
|
return weight |
|
|
|
def unpatch_model(self, device_to=None): |
|
keys = list(self.backup.keys()) |
|
|
|
if self.weight_inplace_update: |
|
for k in keys: |
|
ldm_patched.modules.utils.copy_to_param(self.model, k, self.backup[k]) |
|
else: |
|
for k in keys: |
|
ldm_patched.modules.utils.set_attr(self.model, k, self.backup[k]) |
|
|
|
self.backup = {} |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to |
|
|
|
keys = list(self.object_patches_backup.keys()) |
|
for k in keys: |
|
setattr(self.model, k, self.object_patches_backup[k]) |
|
|
|
self.object_patches_backup = {} |
|
|