|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import ldm_patched.modules.model_management |
|
|
|
def get_canny_nms_kernel(device=None, dtype=None): |
|
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression.""" |
|
return torch.tensor( |
|
[ |
|
[[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], |
|
], |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
|
|
def get_hysteresis_kernel(device=None, dtype=None): |
|
"""Utility function that returns the 3x3 kernels for the Canny hysteresis.""" |
|
return torch.tensor( |
|
[ |
|
[[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], |
|
[[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], |
|
], |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def gaussian_blur_2d(img, kernel_size, sigma): |
|
ksize_half = (kernel_size - 1) * 0.5 |
|
|
|
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) |
|
|
|
pdf = torch.exp(-0.5 * (x / sigma).pow(2)) |
|
|
|
x_kernel = pdf / pdf.sum() |
|
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) |
|
|
|
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) |
|
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) |
|
|
|
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] |
|
|
|
img = torch.nn.functional.pad(img, padding, mode="reflect") |
|
img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3]) |
|
|
|
return img |
|
|
|
def get_sobel_kernel2d(device=None, dtype=None): |
|
kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype) |
|
kernel_y = kernel_x.transpose(0, 1) |
|
return torch.stack([kernel_x, kernel_y]) |
|
|
|
def spatial_gradient(input, normalized: bool = True): |
|
r"""Compute the first order image derivative in both x and y using a Sobel operator. |
|
.. image:: _static/img/spatial_gradient.png |
|
Args: |
|
input: input image tensor with shape :math:`(B, C, H, W)`. |
|
mode: derivatives modality, can be: `sobel` or `diff`. |
|
order: the order of the derivatives. |
|
normalized: whether the output is normalized. |
|
Return: |
|
the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`. |
|
.. note:: |
|
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/ |
|
filtering_edges.html>`__. |
|
Examples: |
|
>>> input = torch.rand(1, 3, 4, 4) |
|
>>> output = spatial_gradient(input) # 1x3x2x4x4 |
|
>>> output.shape |
|
torch.Size([1, 3, 2, 4, 4]) |
|
""" |
|
|
|
|
|
|
|
|
|
kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype) |
|
if normalized: |
|
kernel = normalize_kernel2d(kernel) |
|
|
|
|
|
b, c, h, w = input.shape |
|
tmp_kernel = kernel[:, None, ...] |
|
|
|
|
|
spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2] |
|
out_channels: int = 2 |
|
padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate') |
|
out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1) |
|
return out.reshape(b, c, out_channels, h, w) |
|
|
|
def rgb_to_grayscale(image, rgb_weights = None): |
|
r"""Convert a RGB image to grayscale version of image. |
|
|
|
.. image:: _static/img/rgb_to_grayscale.png |
|
|
|
The image data is assumed to be in the range of (0, 1). |
|
|
|
Args: |
|
image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`. |
|
rgb_weights: Weights that will be applied on each channel (RGB). |
|
The sum of the weights should add up to one. |
|
Returns: |
|
grayscale version of the image with shape :math:`(*,1,H,W)`. |
|
|
|
.. note:: |
|
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/ |
|
color_conversions.html>`__. |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4, 5) |
|
>>> gray = rgb_to_grayscale(input) # 2x1x4x5 |
|
""" |
|
|
|
if len(image.shape) < 3 or image.shape[-3] != 3: |
|
raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}") |
|
|
|
if rgb_weights is None: |
|
|
|
if image.dtype == torch.uint8: |
|
rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8) |
|
|
|
elif image.dtype in (torch.float16, torch.float32, torch.float64): |
|
rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype) |
|
else: |
|
raise TypeError(f"Unknown data type: {image.dtype}") |
|
else: |
|
|
|
rgb_weights = rgb_weights.to(image) |
|
|
|
|
|
r: Tensor = image[..., 0:1, :, :] |
|
g: Tensor = image[..., 1:2, :, :] |
|
b: Tensor = image[..., 2:3, :, :] |
|
|
|
w_r, w_g, w_b = rgb_weights.unbind() |
|
return w_r * r + w_g * g + w_b * b |
|
|
|
def canny( |
|
input, |
|
low_threshold = 0.1, |
|
high_threshold = 0.2, |
|
kernel_size = 5, |
|
sigma = 1, |
|
hysteresis = True, |
|
eps = 1e-6, |
|
): |
|
r"""Find edges of the input image and filters them using the Canny algorithm. |
|
.. image:: _static/img/canny.png |
|
Args: |
|
input: input image tensor with shape :math:`(B,C,H,W)`. |
|
low_threshold: lower threshold for the hysteresis procedure. |
|
high_threshold: upper threshold for the hysteresis procedure. |
|
kernel_size: the size of the kernel for the gaussian blur. |
|
sigma: the standard deviation of the kernel for the gaussian blur. |
|
hysteresis: if True, applies the hysteresis edge tracking. |
|
Otherwise, the edges are divided between weak (0.5) and strong (1) edges. |
|
eps: regularization number to avoid NaN during backprop. |
|
Returns: |
|
- the canny edge magnitudes map, shape of :math:`(B,1,H,W)`. |
|
- the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`. |
|
.. note:: |
|
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/ |
|
canny.html>`__. |
|
Example: |
|
>>> input = torch.rand(5, 3, 4, 4) |
|
>>> magnitude, edges = canny(input) # 5x3x4x4 |
|
>>> magnitude.shape |
|
torch.Size([5, 1, 4, 4]) |
|
>>> edges.shape |
|
torch.Size([5, 1, 4, 4]) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = input.device |
|
dtype = input.dtype |
|
|
|
|
|
if input.shape[1] == 3: |
|
input = rgb_to_grayscale(input) |
|
|
|
|
|
blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma) |
|
|
|
|
|
gradients: Tensor = spatial_gradient(blurred, normalized=False) |
|
|
|
|
|
gx: Tensor = gradients[:, :, 0] |
|
gy: Tensor = gradients[:, :, 1] |
|
|
|
|
|
magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps) |
|
angle: Tensor = torch.atan2(gy, gx) |
|
|
|
|
|
angle = 180.0 * angle / math.pi |
|
|
|
|
|
angle = torch.round(angle / 45) * 45 |
|
|
|
|
|
nms_kernels: Tensor = get_canny_nms_kernel(device, dtype) |
|
nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2) |
|
|
|
|
|
positive_idx: Tensor = (angle / 45) % 8 |
|
positive_idx = positive_idx.long() |
|
|
|
negative_idx: Tensor = ((angle / 45) + 4) % 8 |
|
negative_idx = negative_idx.long() |
|
|
|
|
|
channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx) |
|
channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx) |
|
|
|
channel_select_filtered: Tensor = torch.stack( |
|
[channel_select_filtered_positive, channel_select_filtered_negative], 1 |
|
) |
|
|
|
is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0 |
|
|
|
magnitude = magnitude * is_max |
|
|
|
|
|
edges: Tensor = F.threshold(magnitude, low_threshold, 0.0) |
|
|
|
low: Tensor = magnitude > low_threshold |
|
high: Tensor = magnitude > high_threshold |
|
|
|
edges = low * 0.5 + high * 0.5 |
|
edges = edges.to(dtype) |
|
|
|
|
|
if hysteresis: |
|
edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype) |
|
hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype) |
|
|
|
while ((edges_old - edges).abs() != 0).any(): |
|
weak: Tensor = (edges == 0.5).float() |
|
strong: Tensor = (edges == 1).float() |
|
|
|
hysteresis_magnitude: Tensor = F.conv2d( |
|
edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2 |
|
) |
|
hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype) |
|
hysteresis_magnitude = hysteresis_magnitude * weak + strong |
|
|
|
edges_old = edges.clone() |
|
edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5 |
|
|
|
edges = hysteresis_magnitude |
|
|
|
return magnitude, edges |
|
|
|
|
|
class Canny: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"image": ("IMAGE",), |
|
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}), |
|
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01}) |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "detect_edge" |
|
|
|
CATEGORY = "image/preprocessors" |
|
|
|
def detect_edge(self, image, low_threshold, high_threshold): |
|
output = canny(image.to(ldm_patched.modules.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold) |
|
img_out = output[1].to(ldm_patched.modules.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1) |
|
return (img_out,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"Canny": Canny, |
|
} |
|
|