|
|
|
|
|
|
|
import functools |
|
import math |
|
import re |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from . import block as B |
|
|
|
|
|
|
|
|
|
class RRDBNet(nn.Module): |
|
def __init__( |
|
self, |
|
state_dict, |
|
norm=None, |
|
act: str = "leakyrelu", |
|
upsampler: str = "upconv", |
|
mode: B.ConvMode = "CNA", |
|
) -> None: |
|
""" |
|
ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks. |
|
By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, |
|
and Chen Change Loy. |
|
This is old-arch Residual in Residual Dense Block Network and is not |
|
the newest revision that's available at github.com/xinntao/ESRGAN. |
|
This is on purpose, the newest Network has severely limited the |
|
potential use of the Network with no benefits. |
|
This network supports model files from both new and old-arch. |
|
Args: |
|
norm: Normalization layer |
|
act: Activation layer |
|
upsampler: Upsample layer. upconv, pixel_shuffle |
|
mode: Convolution mode |
|
""" |
|
super(RRDBNet, self).__init__() |
|
self.model_arch = "ESRGAN" |
|
self.sub_type = "SR" |
|
|
|
self.state = state_dict |
|
self.norm = norm |
|
self.act = act |
|
self.upsampler = upsampler |
|
self.mode = mode |
|
|
|
self.state_map = { |
|
|
|
|
|
"model.0.weight": ("conv_first.weight",), |
|
"model.0.bias": ("conv_first.bias",), |
|
"model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"), |
|
"model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"), |
|
r"model.1.sub.\1.RDB\2.conv\3.0.\4": ( |
|
r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)", |
|
r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)", |
|
), |
|
} |
|
if "params_ema" in self.state: |
|
self.state = self.state["params_ema"] |
|
|
|
self.num_blocks = self.get_num_blocks() |
|
self.plus = any("conv1x1" in k for k in self.state.keys()) |
|
if self.plus: |
|
self.model_arch = "ESRGAN+" |
|
|
|
self.state = self.new_to_old_arch(self.state) |
|
|
|
self.key_arr = list(self.state.keys()) |
|
|
|
self.in_nc: int = self.state[self.key_arr[0]].shape[1] |
|
self.out_nc: int = self.state[self.key_arr[-1]].shape[0] |
|
|
|
self.scale: int = self.get_scale() |
|
self.num_filters: int = self.state[self.key_arr[0]].shape[0] |
|
|
|
c2x2 = False |
|
if self.state["model.0.weight"].shape[-2] == 2: |
|
c2x2 = True |
|
self.scale = round(math.sqrt(self.scale / 4)) |
|
self.model_arch = "ESRGAN-2c2" |
|
|
|
self.supports_fp16 = True |
|
self.supports_bfp16 = True |
|
self.min_size_restriction = None |
|
|
|
|
|
if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in ( |
|
self.in_nc / 4, |
|
self.in_nc / 16, |
|
): |
|
self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc)) |
|
else: |
|
self.shuffle_factor = None |
|
|
|
upsample_block = { |
|
"upconv": B.upconv_block, |
|
"pixel_shuffle": B.pixelshuffle_block, |
|
}.get(self.upsampler) |
|
if upsample_block is None: |
|
raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found") |
|
|
|
if self.scale == 3: |
|
upsample_blocks = upsample_block( |
|
in_nc=self.num_filters, |
|
out_nc=self.num_filters, |
|
upscale_factor=3, |
|
act_type=self.act, |
|
c2x2=c2x2, |
|
) |
|
else: |
|
upsample_blocks = [ |
|
upsample_block( |
|
in_nc=self.num_filters, |
|
out_nc=self.num_filters, |
|
act_type=self.act, |
|
c2x2=c2x2, |
|
) |
|
for _ in range(int(math.log(self.scale, 2))) |
|
] |
|
|
|
self.model = B.sequential( |
|
|
|
B.conv_block( |
|
in_nc=self.in_nc, |
|
out_nc=self.num_filters, |
|
kernel_size=3, |
|
norm_type=None, |
|
act_type=None, |
|
c2x2=c2x2, |
|
), |
|
B.ShortcutBlock( |
|
B.sequential( |
|
|
|
*[ |
|
B.RRDB( |
|
nf=self.num_filters, |
|
kernel_size=3, |
|
gc=32, |
|
stride=1, |
|
bias=True, |
|
pad_type="zero", |
|
norm_type=self.norm, |
|
act_type=self.act, |
|
mode="CNA", |
|
plus=self.plus, |
|
c2x2=c2x2, |
|
) |
|
for _ in range(self.num_blocks) |
|
], |
|
|
|
B.conv_block( |
|
in_nc=self.num_filters, |
|
out_nc=self.num_filters, |
|
kernel_size=3, |
|
norm_type=self.norm, |
|
act_type=None, |
|
mode=self.mode, |
|
c2x2=c2x2, |
|
), |
|
) |
|
), |
|
*upsample_blocks, |
|
|
|
B.conv_block( |
|
in_nc=self.num_filters, |
|
out_nc=self.num_filters, |
|
kernel_size=3, |
|
norm_type=None, |
|
act_type=self.act, |
|
c2x2=c2x2, |
|
), |
|
|
|
B.conv_block( |
|
in_nc=self.num_filters, |
|
out_nc=self.out_nc, |
|
kernel_size=3, |
|
norm_type=None, |
|
act_type=None, |
|
c2x2=c2x2, |
|
), |
|
) |
|
|
|
|
|
if self.shuffle_factor: |
|
self.in_nc //= self.shuffle_factor**2 |
|
self.scale //= self.shuffle_factor |
|
|
|
self.load_state_dict(self.state, strict=False) |
|
|
|
def new_to_old_arch(self, state): |
|
"""Convert a new-arch model state dictionary to an old-arch dictionary.""" |
|
if "params_ema" in state: |
|
state = state["params_ema"] |
|
|
|
if "conv_first.weight" not in state: |
|
|
|
return state |
|
|
|
|
|
for kind in ("weight", "bias"): |
|
self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[ |
|
f"model.1.sub./NB/.{kind}" |
|
] |
|
del self.state_map[f"model.1.sub./NB/.{kind}"] |
|
|
|
old_state = OrderedDict() |
|
for old_key, new_keys in self.state_map.items(): |
|
for new_key in new_keys: |
|
if r"\1" in old_key: |
|
for k, v in state.items(): |
|
sub = re.sub(new_key, old_key, k) |
|
if sub != k: |
|
old_state[sub] = v |
|
else: |
|
if new_key in state: |
|
old_state[old_key] = state[new_key] |
|
|
|
|
|
max_upconv = 0 |
|
for key in state.keys(): |
|
match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key) |
|
if match is not None: |
|
_, key_num, key_type = match.groups() |
|
old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key] |
|
max_upconv = max(max_upconv, int(key_num) * 3) |
|
|
|
|
|
for key in state.keys(): |
|
if key in ("HRconv.weight", "conv_hr.weight"): |
|
old_state[f"model.{max_upconv + 2}.weight"] = state[key] |
|
elif key in ("HRconv.bias", "conv_hr.bias"): |
|
old_state[f"model.{max_upconv + 2}.bias"] = state[key] |
|
elif key in ("conv_last.weight",): |
|
old_state[f"model.{max_upconv + 4}.weight"] = state[key] |
|
elif key in ("conv_last.bias",): |
|
old_state[f"model.{max_upconv + 4}.bias"] = state[key] |
|
|
|
|
|
def compare(item1, item2): |
|
parts1 = item1.split(".") |
|
parts2 = item2.split(".") |
|
int1 = int(parts1[1]) |
|
int2 = int(parts2[1]) |
|
return int1 - int2 |
|
|
|
sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare)) |
|
|
|
|
|
out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys) |
|
|
|
return out_dict |
|
|
|
def get_scale(self, min_part: int = 6) -> int: |
|
n = 0 |
|
for part in list(self.state): |
|
parts = part.split(".")[1:] |
|
if len(parts) == 2: |
|
part_num = int(parts[0]) |
|
if part_num > min_part and parts[1] == "weight": |
|
n += 1 |
|
return 2**n |
|
|
|
def get_num_blocks(self) -> int: |
|
nbs = [] |
|
state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + ( |
|
r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)", |
|
) |
|
for state_key in state_keys: |
|
for k in self.state: |
|
m = re.search(state_key, k) |
|
if m: |
|
nbs.append(int(m.group(1))) |
|
if nbs: |
|
break |
|
return max(*nbs) + 1 |
|
|
|
def forward(self, x): |
|
if self.shuffle_factor: |
|
_, _, h, w = x.size() |
|
mod_pad_h = ( |
|
self.shuffle_factor - h % self.shuffle_factor |
|
) % self.shuffle_factor |
|
mod_pad_w = ( |
|
self.shuffle_factor - w % self.shuffle_factor |
|
) % self.shuffle_factor |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") |
|
x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor) |
|
x = self.model(x) |
|
return x[:, :, : h * self.scale, : w * self.scale] |
|
return self.model(x) |
|
|