|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
import math |
|
import ldm_patched.modules.model_management as model_management |
|
|
|
from transformers.generation.logits_process import LogitsProcessorList |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed |
|
from modules.config import path_fooocus_expansion |
|
from ldm_patched.modules.model_patcher import ModelPatcher |
|
|
|
|
|
|
|
SEED_LIMIT_NUMPY = 2**32 |
|
neg_inf = - 8192.0 |
|
|
|
|
|
def safe_str(x): |
|
x = str(x) |
|
for _ in range(16): |
|
x = x.replace(' ', ' ') |
|
return x.strip(",. \r\n") |
|
|
|
|
|
def remove_pattern(x, pattern): |
|
for p in pattern: |
|
x = x.replace(p, '') |
|
return x |
|
|
|
|
|
class FooocusExpansion: |
|
def __init__(self): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion) |
|
|
|
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'), |
|
encoding='utf-8').read().splitlines() |
|
positive_words = ['Ġ' + x.lower() for x in positive_words if x != ''] |
|
|
|
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf |
|
|
|
debug_list = [] |
|
for k, v in self.tokenizer.vocab.items(): |
|
if k in positive_words: |
|
self.logits_bias[0, v] = 0 |
|
debug_list.append(k[1:]) |
|
|
|
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion) |
|
self.model.eval() |
|
|
|
load_device = model_management.text_encoder_device() |
|
offload_device = model_management.text_encoder_offload_device() |
|
|
|
|
|
if model_management.is_device_mps(load_device): |
|
load_device = torch.device('cpu') |
|
offload_device = torch.device('cpu') |
|
|
|
use_fp16 = model_management.should_use_fp16(device=load_device) |
|
|
|
if use_fp16: |
|
self.model.half() |
|
|
|
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) |
|
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def logits_processor(self, input_ids, scores): |
|
assert scores.ndim == 2 and scores.shape[0] == 1 |
|
self.logits_bias = self.logits_bias.to(scores) |
|
|
|
bias = self.logits_bias.clone() |
|
bias[0, input_ids[0].to(bias.device).long()] = neg_inf |
|
bias[0, 11] = 0 |
|
|
|
return scores + bias |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def __call__(self, prompt, seed): |
|
if prompt == '': |
|
return '' |
|
|
|
if self.patcher.current_device != self.patcher.load_device: |
|
print('Fooocus Expansion loaded by itself.') |
|
model_management.load_model_gpu(self.patcher) |
|
|
|
seed = int(seed) % SEED_LIMIT_NUMPY |
|
set_seed(seed) |
|
prompt = safe_str(prompt) + ',' |
|
|
|
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") |
|
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) |
|
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) |
|
|
|
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) |
|
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) |
|
max_new_tokens = max_token_length - current_token_length |
|
|
|
|
|
|
|
features = self.model.generate(**tokenized_kwargs, |
|
top_k=100, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
logits_processor=LogitsProcessorList([self.logits_processor])) |
|
|
|
response = self.tokenizer.batch_decode(features, skip_special_tokens=True) |
|
result = safe_str(response[0]) |
|
|
|
return result |
|
|