|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True): |
|
left, top, right, bot = bbox |
|
width = right - left |
|
height = bot - top |
|
|
|
if preserve_aspect: |
|
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) |
|
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) |
|
else: |
|
width_increase = height_increase = increase_area |
|
left = int(left - width_increase * width) |
|
top = int(top - height_increase * height) |
|
right = int(right + width_increase * width) |
|
bot = int(bot + height_increase * height) |
|
return (left, top, right, bot) |
|
|
|
|
|
def get_valid_bboxes(bboxes, h, w): |
|
left = max(bboxes[0], 0) |
|
top = max(bboxes[1], 0) |
|
right = min(bboxes[2], w) |
|
bottom = min(bboxes[3], h) |
|
return (left, top, right, bottom) |
|
|
|
|
|
def align_crop_face_landmarks(img, |
|
landmarks, |
|
output_size, |
|
transform_size=None, |
|
enable_padding=True, |
|
return_inverse_affine=False, |
|
shrink_ratio=(1, 1)): |
|
"""Align and crop face with landmarks. |
|
|
|
The output_size and transform_size are based on width. The height is |
|
adjusted based on shrink_ratio_h/shring_ration_w. |
|
|
|
Modified from: |
|
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py |
|
|
|
Args: |
|
img (Numpy array): Input image. |
|
landmarks (Numpy array): 5 or 68 or 98 landmarks. |
|
output_size (int): Output face size. |
|
transform_size (ing): Transform size. Usually the four time of |
|
output_size. |
|
enable_padding (float): Default: True. |
|
shrink_ratio (float | tuple[float] | list[float]): Shring the whole |
|
face for height and width (crop larger area). Default: (1, 1). |
|
|
|
Returns: |
|
(Numpy array): Cropped face. |
|
""" |
|
lm_type = 'retinaface_5' |
|
|
|
if isinstance(shrink_ratio, (float, int)): |
|
shrink_ratio = (shrink_ratio, shrink_ratio) |
|
if transform_size is None: |
|
transform_size = output_size * 4 |
|
|
|
|
|
lm = np.array(landmarks) |
|
if lm.shape[0] == 5 and lm_type == 'retinaface_5': |
|
eye_left = lm[0] |
|
eye_right = lm[1] |
|
mouth_avg = (lm[3] + lm[4]) * 0.5 |
|
elif lm.shape[0] == 5 and lm_type == 'dlib_5': |
|
lm_eye_left = lm[2:4] |
|
lm_eye_right = lm[0:2] |
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
mouth_avg = lm[4] |
|
elif lm.shape[0] == 68: |
|
lm_eye_left = lm[36:42] |
|
lm_eye_right = lm[42:48] |
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
mouth_avg = (lm[48] + lm[54]) * 0.5 |
|
elif lm.shape[0] == 98: |
|
lm_eye_left = lm[60:68] |
|
lm_eye_right = lm[68:76] |
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
mouth_avg = (lm[76] + lm[82]) * 0.5 |
|
|
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
|
|
|
|
x /= np.hypot(*x) |
|
rect_scale = 1 |
|
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) |
|
|
|
y = np.flipud(x) * [-1, 1] |
|
|
|
x *= shrink_ratio[1] |
|
y *= shrink_ratio[0] |
|
|
|
|
|
c = eye_avg + eye_to_mouth * 0.1 |
|
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
|
|
qsize = np.hypot(*x) * 2 |
|
|
|
quad_ori = np.copy(quad) |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
h, w = img.shape[0:2] |
|
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink))) |
|
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
h, w = img.shape[0:2] |
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h)) |
|
if crop[2] - crop[0] < w or crop[3] - crop[1] < h: |
|
img = img[crop[1]:crop[3], crop[0]:crop[2], :] |
|
quad -= crop[0:2] |
|
|
|
|
|
|
|
h, w = img.shape[0:2] |
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w = img.shape[0:2] |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], |
|
np.float32(w - 1 - x) / pad[2]), |
|
1.0 - np.minimum(np.float32(y) / pad[1], |
|
np.float32(h - 1 - y) / pad[3])) |
|
blur = int(qsize * 0.02) |
|
if blur % 2 == 0: |
|
blur += 1 |
|
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur)) |
|
|
|
img = img.astype('float32') |
|
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = np.clip(img, 0, 255) |
|
quad += pad[:2] |
|
|
|
|
|
h_ratio = shrink_ratio[0] / shrink_ratio[1] |
|
dst_h, dst_w = int(transform_size * h_ratio), transform_size |
|
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) |
|
|
|
|
|
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] |
|
cropped_face = cv2.warpAffine( |
|
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) |
|
|
|
if output_size < transform_size: |
|
cropped_face = cv2.resize( |
|
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR) |
|
|
|
if return_inverse_affine: |
|
dst_h, dst_w = int(output_size * h_ratio), output_size |
|
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) |
|
|
|
|
|
affine_matrix = cv2.estimateAffinePartial2D( |
|
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] |
|
inverse_affine = cv2.invertAffineTransform(affine_matrix) |
|
else: |
|
inverse_affine = None |
|
return cropped_face, inverse_affine |
|
|
|
|
|
def paste_face_back(img, face, inverse_affine): |
|
h, w = img.shape[0:2] |
|
face_h, face_w = face.shape[0:2] |
|
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h)) |
|
mask = np.ones((face_h, face_w, 3), dtype=np.float32) |
|
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h)) |
|
|
|
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8)) |
|
inv_restored_remove_border = inv_mask_erosion * inv_restored |
|
total_face_area = np.sum(inv_mask_erosion) // 3 |
|
|
|
w_edge = int(total_face_area**0.5) // 20 |
|
erosion_radius = w_edge * 2 |
|
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) |
|
blur_size = w_edge * 2 |
|
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) |
|
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img |
|
|
|
return img |
|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
|
|
from extras.facexlib.detection import init_detection_model |
|
from extras.facexlib.utils.face_restoration_helper import get_largest_face |
|
from extras.facexlib.visualization import visualize_detection |
|
|
|
img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png' |
|
img_name = os.splitext(os.path.basename(img_path))[0] |
|
|
|
|
|
det_net = init_detection_model('retinaface_resnet50', half=False) |
|
img_ori = cv2.imread(img_path) |
|
h, w = img_ori.shape[0:2] |
|
|
|
scale = max(h / 800, w / 800) |
|
if scale > 1: |
|
img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR) |
|
|
|
with torch.no_grad(): |
|
bboxes = det_net.detect_faces(img, 0.97) |
|
if scale > 1: |
|
bboxes *= scale |
|
bboxes = get_largest_face(bboxes, h, w)[0] |
|
visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png') |
|
|
|
landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) |
|
|
|
cropped_face, inverse_affine = align_crop_face_landmarks( |
|
img_ori, |
|
landmarks, |
|
output_size=512, |
|
transform_size=None, |
|
enable_padding=True, |
|
return_inverse_affine=True, |
|
shrink_ratio=(1, 1)) |
|
|
|
cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face) |
|
img = paste_face_back(img_ori, cropped_face, inverse_affine) |
|
cv2.imwrite(f'tmp/{img_name}_back.png', img) |
|
|