wetdog's picture
Inital demo
c52280c
import argparse
import itertools
import json
import os
import time
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from fastprogress import master_bar, progress_bar
from torch.cuda.amp.grad_scaler import GradScaler
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from .meldataset import (LogMelSpectrogram, MelDataset, get_dataset_filelist,
mel_spectrogram)
from .models import (Generator, MultiPeriodDiscriminator,
MultiScaleDiscriminator, discriminator_loss, feature_loss,
generator_loss)
from .utils import (AttrDict, build_env, load_checkpoint, plot_spectrogram,
save_checkpoint, scan_checkpoint)
torch.backends.cudnn.benchmark = True
USE_ALT_MELCALC = True
def train(rank, a, h):
if h.num_gpus > 1:
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda:{:d}'.format(rank))
generator = Generator(h).to(device)
mpd = MultiPeriodDiscriminator().to(device)
msd = MultiScaleDiscriminator().to(device)
if rank == 0:
print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
mpd.load_state_dict(state_dict_do['mpd'])
msd.load_state_dict(state_dict_do['msd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
print(f"Restored checkpoint from {cp_g} and {cp_do}")
if h.num_gpus > 1:
print("Multi-gpu detected")
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
if a.fp16:
scaler_g = GradScaler()
scaler_d = GradScaler()
train_df, valid_df = get_dataset_filelist(a)
trainset = MelDataset(train_df, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
fine_tuning=a.fine_tuning,
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path,
use_alt_melcalc=USE_ALT_MELCALC)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
persistent_workers=True,
drop_last=True)
alt_melspec = LogMelSpectrogram(h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).to(device)
if rank == 0:
validset = MelDataset(valid_df, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path,
use_alt_melcalc=USE_ALT_MELCALC)
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
persistent_workers=True,
drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
generator.train()
mpd.train()
msd.train()
if rank == 0: mb = master_bar(range(max(0, last_epoch), a.training_epochs))
else: mb = range(max(0, last_epoch), a.training_epochs)
for epoch in mb:
if rank == 0:
start = time.time()
mb.write("Epoch: {}".format(epoch+1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
if rank == 0: pb = progress_bar(enumerate(train_loader), total=len(train_loader), parent=mb)
else: pb = enumerate(train_loader)
for i, batch in pb:
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
with torch.cuda.amp.autocast(enabled=a.fp16):
y_g_hat = generator(x)
if USE_ALT_MELCALC:
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
else:
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
# print(x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
optim_d.zero_grad()
with torch.cuda.amp.autocast(enabled=a.fp16):
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
if a.fp16:
scaler_d.scale(loss_disc_all).backward()
scaler_d.step(optim_d)
scaler_d.update()
else:
loss_disc_all.backward()
optim_d.step()
# Generator
optim_g.zero_grad()
with torch.cuda.amp.autocast(enabled=a.fp16):
# L1 Mel-Spectrogram Loss
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
if a.fp16:
scaler_g.scale(loss_gen_all).backward()
scaler_g.step(optim_g)
scaler_g.update()
else:
loss_gen_all.backward()
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
mb.write('Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, sec/batch : {:4.3f}, peak mem: {:5.2f}GB'. \
format(steps, loss_gen_all, mel_error, time.time() - start_b, torch.cuda.max_memory_allocated()/1e9))
mb.child.comment = "Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}". \
format(steps, loss_gen_all, mel_error)
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}.pt".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}.pt".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'mpd': (mpd.module if h.num_gpus > 1
else mpd).state_dict(),
'msd': (msd.module if h.num_gpus > 1
else msd).state_dict(),
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/disc_loss_total", loss_disc_all, steps)
# Validation
if steps % a.validation_interval == 0: # and steps != 0:
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
with torch.no_grad():
for j, batch in progress_bar(enumerate(validation_loader), total=len(validation_loader), parent=mb):
x, y, _, y_mel = batch
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
if USE_ALT_MELCALC:
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
if y_g_hat_mel.shape[-1] != y_mel.shape[-1]:
# pad it
n_pad = h.hop_size
y_g_hat = F.pad(y_g_hat, (n_pad//2, n_pad - n_pad//2))
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
else:
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
#print('valid', x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
if j <= 4:
if steps == 0:
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
if USE_ALT_MELCALC:
y_hat_spec = alt_melspec(y_g_hat.squeeze(1))
else:
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
sw.add_figure('generated/y_hat_spec_{}'.format(j),
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
val_err = val_err_tot / (j+1)
sw.add_scalar("validation/mel_spec_error", val_err, steps)
mb.write(f"validation run complete at {steps:,d} steps. validation mel spec error: {val_err:5.4f}")
generator.train()
sw.add_scalar("memory/max_allocated_gb", torch.cuda.max_memory_allocated()/1e9, steps)
sw.add_scalar("memory/max_reserved_gb", torch.cuda.max_memory_reserved()/1e9, steps)
torch.cuda.reset_peak_memory_stats()
torch.cuda.reset_accumulated_memory_stats()
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--audio_root_path', required=True)
parser.add_argument('--feature_root_path', required=True)
parser.add_argument('--input_training_file', default='LJSpeech-1.1/training.txt')
parser.add_argument('--input_validation_file', default='LJSpeech-1.1/validation.txt')
parser.add_argument('--checkpoint_path', default='cp_hifigan')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=1500, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=5000, type=int)
parser.add_argument('--summary_interval', default=25, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
parser.add_argument('--fp16', default=False, type=bool)
parser.add_argument('--fine_tuning', action='store_true')
a = parser.parse_args()
print(a)
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
else:
train(0, a, h)
if __name__ == '__main__':
main()