|
"""
|
|
Copyright (c) 2023, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
import logging
|
|
import string
|
|
import random
|
|
import copy
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.cuda.amp import autocast as autocast
|
|
from transformers import T5TokenizerFast
|
|
|
|
from lavis.common.registry import registry
|
|
from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train
|
|
from lavis.models.blip2_models.modeling_t5 import T5Config, T5ForConditionalGeneration
|
|
from transformers.modeling_outputs import BaseModelOutput
|
|
|
|
|
|
@registry.register_model("blip2_t5_instruct")
|
|
class Blip2T5Instruct(Blip2Base):
|
|
"""
|
|
BLIP2 T5 model.
|
|
Supported model types:
|
|
- flant5xl
|
|
- flant5xxl
|
|
Usage:
|
|
>>> from lavis.models import load_model
|
|
>>> model = load_model("blip2_t5_instruct", "flant5xl")
|
|
"""
|
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
"flant5xl": "configs/models/blip2/blip2_instruct_flant5xl.yaml",
|
|
"flant5xxl": "configs/models/blip2/blip2_instruct_flant5xxl.yaml",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vit_model="eva_clip_g",
|
|
img_size=224,
|
|
drop_path_rate=0,
|
|
use_grad_checkpoint=False,
|
|
vit_precision="fp16",
|
|
freeze_vit=True,
|
|
num_query_token=32,
|
|
t5_model="google/flan-t5-xl",
|
|
prompt="",
|
|
max_txt_len=128,
|
|
max_output_txt_len=256,
|
|
apply_lemmatizer=False,
|
|
num_few_shot_examples=0,
|
|
few_shot_prob=0,
|
|
qformer_text_input=True,
|
|
):
|
|
"""
|
|
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.tokenizer = self.init_tokenizer(truncation_side="left")
|
|
|
|
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
|
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
|
)
|
|
if freeze_vit:
|
|
for name, param in self.visual_encoder.named_parameters():
|
|
param.requires_grad = False
|
|
self.visual_encoder = self.visual_encoder.eval()
|
|
self.visual_encoder.train = disabled_train
|
|
logging.info("freeze vision encoder")
|
|
|
|
self.Qformer, self.query_tokens = self.init_Qformer(
|
|
num_query_token, self.visual_encoder.num_features
|
|
)
|
|
|
|
if not qformer_text_input:
|
|
self.Qformer.bert.embeddings.word_embeddings = None
|
|
self.Qformer.bert.embeddings.position_embeddings = None
|
|
for layer in self.Qformer.bert.encoder.layer:
|
|
layer.output = None
|
|
layer.intermediate = None
|
|
else:
|
|
self.Qformer.resize_token_embeddings(len(self.tokenizer))
|
|
self.Qformer.cls = None
|
|
|
|
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='left')
|
|
self.t5_output_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='right')
|
|
|
|
t5_config = T5Config.from_pretrained(t5_model)
|
|
t5_config.dense_act_fn = "gelu"
|
|
self.t5_model = T5ForConditionalGeneration.from_pretrained(
|
|
t5_model, config=t5_config
|
|
)
|
|
|
|
for name, param in self.t5_model.named_parameters():
|
|
param.requires_grad = False
|
|
param.data = param.data.bfloat16()
|
|
|
|
self.t5_proj = nn.Linear(
|
|
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
|
|
)
|
|
|
|
self.max_txt_len = max_txt_len
|
|
self.max_output_txt_len = max_output_txt_len
|
|
self.prompt = prompt
|
|
|
|
self._apply_lemmatizer = apply_lemmatizer
|
|
self._lemmatizer = None
|
|
|
|
self.num_few_shot_examples = num_few_shot_examples
|
|
self.few_shot_prob = few_shot_prob
|
|
|
|
self.qformer_text_input = qformer_text_input
|
|
|
|
def forward(self, samples):
|
|
|
|
|
|
|
|
|
|
|
|
image = samples["image"]
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
if self.qformer_text_input:
|
|
text_Qformer = self.tokenizer(
|
|
samples["text_input"],
|
|
padding='longest',
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
|
|
|
|
query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask=Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
fs_embeds, fs_atts = None, None
|
|
if self.few_shot_prob > 0 and "few_shot_samples" in samples.keys():
|
|
fs_embeds, fs_atts = self.prepare_few_shot_embeds(samples['few_shot_samples'])
|
|
|
|
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
input_tokens = self.t5_tokenizer(
|
|
samples["text_input"],
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
output_tokens = self.t5_output_tokenizer(
|
|
samples["text_output"],
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_output_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
|
|
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
|
|
targets = output_tokens.input_ids.masked_fill(
|
|
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
|
|
)
|
|
|
|
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
|
|
if fs_embeds is not None:
|
|
inputs_embeds = torch.cat([fs_embeds, inputs_embeds], dim=1)
|
|
encoder_atts = torch.cat([fs_atts, encoder_atts], dim=1)
|
|
|
|
outputs = self.t5_model(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=encoder_atts,
|
|
decoder_attention_mask=output_tokens.attention_mask,
|
|
return_dict=True,
|
|
labels=targets,
|
|
)
|
|
loss = outputs.loss
|
|
|
|
return {"loss": loss}
|
|
|
|
def prepare_few_shot_embeds(self, samples):
|
|
this_n_fs = random.choices(
|
|
list(range(self.num_few_shot_examples + 1)),
|
|
weights=[1 - self.few_shot_prob] + [self.few_shot_prob / self.num_few_shot_examples] * self.num_few_shot_examples
|
|
)[0]
|
|
|
|
if this_n_fs == 0:
|
|
return None, None
|
|
|
|
images = []
|
|
text_input = []
|
|
for sample in samples:
|
|
for n in range(this_n_fs):
|
|
images.append(sample['image'][n])
|
|
text_input.append(sample['text_input'][n])
|
|
images = torch.stack(images, dim=0)
|
|
|
|
image = images
|
|
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
if self.qformer_text_input:
|
|
text_Qformer = self.tokenizer(
|
|
text_input,
|
|
padding='longest',
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
|
|
query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask = Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
input_tokens = self.t5_tokenizer(
|
|
text_input,
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
|
|
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
|
|
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
|
|
if this_n_fs > 1:
|
|
encoder_atts = encoder_atts.reshape(encoder_atts.size(0) // this_n_fs, encoder_atts.size(1) * this_n_fs)
|
|
inputs_embeds = inputs_embeds.reshape(inputs_embeds.size(0) // this_n_fs, inputs_embeds.size(1) * this_n_fs, inputs_embeds.size(2))
|
|
|
|
return inputs_embeds, encoder_atts
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
samples,
|
|
use_nucleus_sampling=False,
|
|
num_beams=5,
|
|
max_length=256,
|
|
min_length=1,
|
|
top_p=0.9,
|
|
repetition_penalty=1.5,
|
|
length_penalty=1.0,
|
|
num_captions=1,
|
|
temperature=1,
|
|
):
|
|
if "prompt" in samples.keys():
|
|
prompt = samples["prompt"]
|
|
else:
|
|
prompt = self.prompt
|
|
|
|
image = samples["image"]
|
|
|
|
bs = image.size(0)
|
|
|
|
if isinstance(prompt, str):
|
|
prompt = [prompt] * bs
|
|
else:
|
|
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
|
|
|
|
|
|
if "ocr_tokens" in samples.keys() and "{}" in prompt[0]:
|
|
prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]
|
|
|
|
query_tokens = self.query_tokens.expand(bs, -1, -1)
|
|
if self.qformer_text_input:
|
|
|
|
|
|
|
|
|
|
text_Qformer = self.tokenizer(
|
|
prompt,
|
|
padding='longest',
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)
|
|
|
|
|
|
if image.dim() == 5:
|
|
inputs_t5, atts_t5 = [], []
|
|
for j in range(image.size(2)):
|
|
this_frame = image[:,:,j,:,:]
|
|
with self.maybe_autocast():
|
|
frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
|
|
frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
if self.qformer_text_input:
|
|
frame_query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask = Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=frame_embeds,
|
|
encoder_attention_mask=frame_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
frame_query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=frame_embeds,
|
|
encoder_attention_mask=frame_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
inputs_t5.append(frame_inputs_t5)
|
|
atts_t5.append(frame_atts_t5)
|
|
inputs_t5 = torch.cat(inputs_t5, dim=1)
|
|
atts_t5 = torch.cat(atts_t5, dim=1)
|
|
else:
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
if self.qformer_text_input:
|
|
query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask=Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
input_tokens = self.t5_tokenizer(
|
|
prompt,
|
|
padding="longest",
|
|
return_tensors="pt"
|
|
).to(image.device)
|
|
|
|
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
|
|
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
|
|
outputs = self.t5_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=encoder_atts,
|
|
do_sample=use_nucleus_sampling,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
num_beams=num_beams,
|
|
max_new_tokens=max_length,
|
|
min_length=min_length,
|
|
repetition_penalty=repetition_penalty,
|
|
length_penalty=length_penalty,
|
|
num_return_sequences=num_captions,
|
|
)
|
|
output_text = self.t5_tokenizer.batch_decode(
|
|
outputs, skip_special_tokens=True
|
|
)
|
|
|
|
return output_text
|
|
|
|
def predict_answers(
|
|
self,
|
|
samples,
|
|
num_beams=5,
|
|
inference_method="generate",
|
|
max_len=10,
|
|
min_len=1,
|
|
num_ans_candidates=128,
|
|
answer_list=None,
|
|
prompt="",
|
|
length_penalty=-1,
|
|
**kwargs
|
|
):
|
|
if isinstance(samples["text_input"], str):
|
|
samples["text_input"] = [samples["text_input"]]
|
|
|
|
if prompt:
|
|
if prompt.count("{}") == 2:
|
|
if 'ocr_tokens' in samples:
|
|
text_input = [
|
|
prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["text_input"][i])
|
|
for i in range(len(samples["text_input"]))]
|
|
elif 'choices' in samples:
|
|
text_input = []
|
|
for i in range(len(samples["text_input"])):
|
|
this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])]
|
|
this_choices = " ".join(this_choices)
|
|
text_input.append(prompt.format(samples["text_input"][i], this_choices))
|
|
else:
|
|
text_input = [prompt.format(question) for question in samples["text_input"]]
|
|
else:
|
|
text_input = samples["text_input"]
|
|
|
|
samples["prompt"] = text_input
|
|
|
|
output_text = self.generate(
|
|
samples,
|
|
num_beams=num_beams,
|
|
max_length=max_len,
|
|
min_length=min_len,
|
|
length_penalty=length_penalty
|
|
)
|
|
|
|
if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
|
|
output_text = self._lemmatize(output_text)
|
|
|
|
return output_text
|
|
|
|
def predict_class(
|
|
self,
|
|
samples,
|
|
candidates,
|
|
n_segments=1,
|
|
):
|
|
|
|
if type(candidates[0]) == list:
|
|
results = []
|
|
|
|
for i in range(samples["image"].size(0)):
|
|
this_sample = {
|
|
"image": samples["image"][i].unsqueeze(0),
|
|
"prompt": samples["prompt"],
|
|
}
|
|
|
|
if "text_input" in samples.keys():
|
|
this_sample["text_input"] = [samples["text_input"][i]]
|
|
|
|
if 'context' in samples.keys():
|
|
this_sample['context'] = [samples["context"][i]]
|
|
|
|
if 'history' in samples.keys():
|
|
this_sample['history'] = [samples["history"][i]]
|
|
|
|
if 'caption' in samples.keys():
|
|
this_sample['caption'] = [samples["caption"][i]]
|
|
|
|
this_result = self._predict_class(this_sample, candidates[i], n_segments)
|
|
results.append(this_result)
|
|
|
|
try:
|
|
results = torch.cat(results, dim=0)
|
|
except:
|
|
results = [res.tolist()[0] for res in results]
|
|
|
|
return results
|
|
|
|
return self._predict_class(samples, candidates, n_segments)
|
|
|
|
def _predict_class(
|
|
self,
|
|
samples,
|
|
candidates,
|
|
n_segments=1,
|
|
):
|
|
"""
|
|
Args:
|
|
samples (dict): A dictionary containing the following keys:
|
|
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
|
|
- prompt: the instruction
|
|
candidates:
|
|
(list): A list of candidate class names;
|
|
n_segments:
|
|
(int): Split the candidates into n_segments and predict one by one. This is useful when the number of candidates is too large.
|
|
Returns:
|
|
output_class: predicted class index
|
|
"""
|
|
|
|
image = samples["image"]
|
|
prompt = samples["prompt"]
|
|
|
|
bs = image.size(0)
|
|
|
|
if isinstance(prompt, str):
|
|
prompt = [prompt] * bs
|
|
else:
|
|
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
|
|
|
|
if "text_input" in samples.keys():
|
|
if type(samples["text_input"][0]) == list:
|
|
prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))]
|
|
else:
|
|
prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))]
|
|
|
|
|
|
if 'context' in samples.keys() and samples['context'] != '':
|
|
prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]
|
|
|
|
|
|
if 'history' in samples.keys() and samples['history'][0] != '':
|
|
prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))]
|
|
|
|
if 'caption' in samples.keys() and samples['caption'][0] != '':
|
|
prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))]
|
|
|
|
query_tokens = self.query_tokens.expand(bs, -1, -1)
|
|
if self.qformer_text_input:
|
|
text_Qformer = self.tokenizer(
|
|
prompt,
|
|
padding='longest',
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
return_tensors="pt"
|
|
).to(image.device)
|
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask], dim=1)
|
|
|
|
if image.dim() == 5:
|
|
inputs_t5, atts_t5 = [], []
|
|
for j in range(image.size(2)):
|
|
this_frame = image[:,:,j,:,:]
|
|
with self.maybe_autocast():
|
|
frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
|
|
frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
if self.qformer_text_input:
|
|
frame_query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask=Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=frame_embeds,
|
|
encoder_attention_mask=frame_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
frame_query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=frame_embeds,
|
|
encoder_attention_mask=frame_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
inputs_t5.append(frame_inputs_t5)
|
|
atts_t5.append(frame_atts_t5)
|
|
inputs_t5 = torch.cat(inputs_t5, dim=1)
|
|
atts_t5 = torch.cat(atts_t5, dim=1)
|
|
else:
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
if self.qformer_text_input:
|
|
query_output = self.Qformer.bert(
|
|
text_Qformer.input_ids,
|
|
attention_mask=Qformer_atts,
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
else:
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
|
|
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
|
|
input_tokens = self.t5_tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).to(image.device)
|
|
output_tokens = self.t5_tokenizer(
|
|
candidates, padding="longest", return_tensors="pt"
|
|
).to(image.device)
|
|
|
|
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
|
|
n_cands = len(candidates)
|
|
|
|
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
|
|
encoder_outputs = self.t5_model.encoder(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=encoder_atts,
|
|
)
|
|
|
|
all_losses = []
|
|
for n in range(n_segments):
|
|
seg_len = n_cands // n_segments
|
|
if n == (n_segments - 1):
|
|
seg_len = n_cands - seg_len * (n_segments - 1)
|
|
|
|
|
|
this_encoder_outputs = BaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0].clone(),
|
|
)
|
|
|
|
this_encoder_outputs['last_hidden_state'] = this_encoder_outputs[0].repeat_interleave(seg_len, dim=0)
|
|
this_encoder_atts = encoder_atts.repeat_interleave(seg_len, dim=0)
|
|
|
|
start_i = n * (n_cands // n_segments)
|
|
end_i = start_i + seg_len
|
|
this_output_tokens_ids = output_tokens.input_ids[start_i:end_i].repeat(bs, 1)
|
|
this_output_tokens_atts = output_tokens.attention_mask[start_i:end_i].repeat(bs, 1)
|
|
|
|
this_targets = this_output_tokens_ids.masked_fill(this_output_tokens_ids == self.t5_tokenizer.pad_token_id, -100)
|
|
|
|
outputs = self.t5_model(
|
|
encoder_outputs=this_encoder_outputs,
|
|
attention_mask=this_encoder_atts,
|
|
decoder_attention_mask=this_output_tokens_atts,
|
|
return_dict=True,
|
|
labels=this_targets,
|
|
reduction="none",
|
|
)
|
|
loss = outputs.loss
|
|
|
|
loss = loss.reshape(bs, seg_len)
|
|
|
|
all_losses.append(loss)
|
|
|
|
all_losses = torch.cat(all_losses, dim=-1)
|
|
output_class_ranks = torch.argsort(all_losses, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output_class_ranks
|
|
|
|
def _lemmatize(self, answers):
|
|
def apply(answer):
|
|
doc = self.lemmatizer(answer)
|
|
|
|
words = []
|
|
for token in doc:
|
|
if token.pos_ in ["NOUN", "VERB"]:
|
|
words.append(token.lemma_)
|
|
else:
|
|
words.append(token.text)
|
|
answer = " ".join(words)
|
|
|
|
return answer
|
|
|
|
return [apply(answer) for answer in answers]
|
|
|
|
@property
|
|
def lemmatizer(self):
|
|
if self._lemmatizer is None:
|
|
try:
|
|
import spacy
|
|
|
|
self._lemmatizer = spacy.load("en_core_web_sm")
|
|
except ImportError:
|
|
logging.error(
|
|
"""
|
|
Please install spacy and en_core_web_sm model to apply lemmatization.
|
|
python -m spacy download en_core_web_sm
|
|
OR
|
|
import spacy.cli
|
|
spacy.cli.download("en_core_web_sm")
|
|
"""
|
|
)
|
|
exit(1)
|
|
|
|
return self._lemmatizer
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg):
|
|
vit_model = cfg.get("vit_model", "eva_clip_g")
|
|
img_size = cfg.get("image_size")
|
|
num_query_token = cfg.get("num_query_token")
|
|
t5_model = cfg.get("t5_model")
|
|
|
|
drop_path_rate = cfg.get("drop_path_rate", 0)
|
|
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
|
|
vit_precision = cfg.get("vit_precision", "fp16")
|
|
freeze_vit = cfg.get("freeze_vit", True)
|
|
|
|
prompt = cfg.get("prompt", "")
|
|
max_txt_len = cfg.get("max_txt_len", 128)
|
|
max_output_txt_len = cfg.get("max_output_txt_len", 256)
|
|
|
|
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
|
|
|
|
num_few_shot_examples = cfg.get("num_few_shot_examples", 0)
|
|
few_shot_prob = cfg.get("few_shot_prob", 0.0)
|
|
|
|
qformer_text_input = cfg.get("qformer_text_input", True)
|
|
|
|
model = cls(
|
|
vit_model=vit_model,
|
|
img_size=img_size,
|
|
drop_path_rate=drop_path_rate,
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
vit_precision=vit_precision,
|
|
freeze_vit=freeze_vit,
|
|
num_query_token=num_query_token,
|
|
t5_model=t5_model,
|
|
prompt=prompt,
|
|
max_txt_len=max_txt_len,
|
|
max_output_txt_len=max_output_txt_len,
|
|
apply_lemmatizer=apply_lemmatizer,
|
|
num_few_shot_examples=num_few_shot_examples,
|
|
few_shot_prob=few_shot_prob,
|
|
qformer_text_input=qformer_text_input,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.load_checkpoint_from_config(cfg)
|
|
|
|
return model
|
|
|