|
import pandas as pd
|
|
import re
|
|
import random
|
|
import Levenshtein
|
|
import numpy as np
|
|
import difflib
|
|
|
|
import time
|
|
from multiprocessing import Pool, Queue, Process
|
|
import matplotlib.pyplot as plt
|
|
from data.evaluate_data.utils import Ontology
|
|
|
|
|
|
def fuzzy_match(texts):
|
|
text_dict = {}
|
|
for context in texts:
|
|
if context not in choices:
|
|
|
|
text_dict[context] = difflib.get_close_matches(context, choices, n=1, cutoff=0.)[0]
|
|
return text_dict
|
|
|
|
|
|
def get_sim(text, label):
|
|
all_s = []
|
|
for x in label:
|
|
s = 0
|
|
for y in text:
|
|
temp = Levenshtein.ratio(x, y)
|
|
if temp > s:
|
|
s = temp
|
|
all_s.append(s)
|
|
all_s = [round(i, 3) for i in all_s]
|
|
|
|
|
|
return all_s
|
|
|
|
|
|
def txt_map(x, txt_dict):
|
|
if type(x) == str:
|
|
x = eval(x)
|
|
x_ = []
|
|
for i in x:
|
|
if i == '':
|
|
continue
|
|
if i in txt_dict:
|
|
x_.append(txt_dict[i])
|
|
else:
|
|
x_.append(i)
|
|
return x_
|
|
|
|
|
|
def go_map(t):
|
|
if t in GO_dict:
|
|
return GO_dict[t]
|
|
else:
|
|
print(t)
|
|
|
|
|
|
def get_term(df):
|
|
from collections import Counter
|
|
cnt = Counter()
|
|
for i, row in enumerate(df.itertuples()):
|
|
for term in row.prop_annotations:
|
|
cnt[term] += 1
|
|
terms = list(cnt.keys())
|
|
|
|
for top_term in ['GO:0005575', 'GO:0003674', 'GO:0008150']:
|
|
if top_term in terms:
|
|
terms.remove(top_term)
|
|
terms_df = pd.DataFrame({'gos': terms})
|
|
terms_df.to_pickle(f'/cluster/home/wenkai/deepgozero/data/blip2/{cat}/terms.pkl')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cat = 'mf'
|
|
|
|
go = Ontology(f'/cluster/home/wenkai/deepgozero/data/data/go.obo', with_rels=True)
|
|
go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions_new.txt', sep='|', header=None)
|
|
go_des.columns = ['GO', 'function']
|
|
go_des = go_des[go_des['function'].notnull()]
|
|
go_des['function'] = go_des['function'].apply(lambda x: x.lower().strip())
|
|
go_des['GO'] = go_des['GO'].apply(lambda x: re.sub('_', ':', x))
|
|
GO_dict = dict(zip(go_des['function'], go_des['GO']))
|
|
|
|
|
|
data = pd.read_csv('/cluster/home/wenkai/LAVIS/output_exp/predict_concat_test{}.csv'.format(cat), sep='|')
|
|
|
|
data['label'] = data['label'].apply(lambda x: x.lower())
|
|
data['pred'] = data['pred'].apply(lambda x: re.sub('</s>', '', x))
|
|
|
|
data['label_list'] = data['label'].apply(lambda x: [i.strip() for i in x.split(';')])
|
|
data['pred_list'] = data['pred'].apply(lambda x: [i.strip() for i in x.split(';')])
|
|
|
|
train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_exp/train_{}.csv'.format(cat), sep='|')
|
|
train = train.drop_duplicates()
|
|
train['function'] = train['function'].apply(lambda x: x.lower().strip())
|
|
train_dict = dict(zip(train['function'], train['GO_label']))
|
|
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_exp/test_{}.csv'.format(cat), sep='|')
|
|
test = test.drop_duplicates()
|
|
test['function'] = test['function'].apply(lambda x: x.lower().strip())
|
|
test_dict = dict(zip(test['function'], test['GO_label']))
|
|
GO_dict.update(train_dict)
|
|
GO_dict.update(test_dict)
|
|
|
|
choices = []
|
|
for x in data['label_list'].tolist() + train['function'].tolist():
|
|
choices.extend(x)
|
|
choices = list(set(choices))
|
|
|
|
|
|
|
|
print("找到与预测文本最相似的GO标签......")
|
|
t0 = time.time()
|
|
txt_dict = {}
|
|
|
|
all_txt = []
|
|
for txt in data['pred_list']:
|
|
if type(txt) == str:
|
|
all_txt.extend(eval(txt))
|
|
else:
|
|
all_txt.extend(txt)
|
|
all_txt = list(set(all_txt))
|
|
|
|
n = len(all_txt)
|
|
thread = 40
|
|
size = int(n/thread)
|
|
inds = list(range(0, n, size))
|
|
inds.append(n)
|
|
all_txt_sep = [all_txt[i: min(i+size, n)] for i in inds[:-1]]
|
|
|
|
with Pool(processes=thread) as pool:
|
|
result = pool.map(fuzzy_match, all_txt_sep)
|
|
pool.close()
|
|
pool.join()
|
|
for d in result:
|
|
txt_dict.update(d)
|
|
|
|
|
|
|
|
|
|
data['pred_list'] = data['pred_list'].apply(lambda x: txt_map(x, txt_dict))
|
|
data['pred_list'] = data['pred_list'].apply(lambda x: list(set(x)))
|
|
print("fuzzy matching time: {}".format(time.time() - t0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("calculating f1 score ......")
|
|
data['label_list_go'] = data['label_list'].apply(lambda x: [go_map(i) for i in x])
|
|
data['pred_list_go'] = data['pred_list'].apply(lambda x: [go_map(i) for i in x])
|
|
|
|
|
|
labels = []
|
|
pred_labels = []
|
|
for l in data['label_list_go']:
|
|
if type(l) == str:
|
|
l = eval(l)
|
|
labels.extend(l)
|
|
|
|
label_count = {}
|
|
for x in labels:
|
|
if x not in label_count:
|
|
label_count[x] = 1
|
|
else:
|
|
label_count[x] += 1
|
|
|
|
labels = list(set(labels))
|
|
total = len(labels)
|
|
recalls = []
|
|
precisions = []
|
|
tp_dict, fp_dict, fn_dict = dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels)))
|
|
for preds, label in zip(data['pred_list_go'], data['label_list_go']):
|
|
if type(label) == str:
|
|
label = eval(label)
|
|
if type(preds) == str:
|
|
txts = eval(preds)
|
|
ll = len(label)
|
|
for t in label:
|
|
supgo = go.get_anchestors(t)
|
|
if supgo.intersection(set(preds)):
|
|
tp_dict[t] += 1
|
|
else:
|
|
fn_dict[t] += 1
|
|
for p in preds:
|
|
supgo = go.get_anchestors(p)
|
|
if not supgo.intersection(set(label)):
|
|
if p in fp_dict:
|
|
fp_dict[p] += 1
|
|
else:
|
|
fp_dict[p] = 1
|
|
pred_labels.extend(preds)
|
|
p_total = len(set(pred_labels))
|
|
recall, pr = 0., 0.
|
|
for x in labels:
|
|
recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
|
|
pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
|
|
r = recall / total
|
|
p = pr / p_total
|
|
f1 = 2 * p * r / (p + r)
|
|
|
|
print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
|
|
print("f1 score: {}".format(f1))
|
|
|
|
'''
|
|
cat_f1 = {}
|
|
for x in labels:
|
|
if tp_dict[x] + fn_dict[x] > 0:
|
|
re = tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
|
|
pr = tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
|
|
cat_f1[x] = 2 * pr * re / (pr + re + 1e-10)
|
|
|
|
plt.xlabel('f score')
|
|
plt.ylabel('count')
|
|
print(np.mean(list(cat_f1.values())))
|
|
plt.hist(list(cat_f1.values()), color='red', bins=30)
|
|
plt.show()
|
|
|
|
xs, ys = [], []
|
|
for x in labels:
|
|
xs.append(label_count[x])
|
|
ys.append(cat_f1[x])
|
|
df_count = pd.DataFrame({'xs': xs, 'ys': ys})
|
|
df_count['xs'].loc[df_count['xs'] > 10] = 11
|
|
df_count['xs'] = df_count['xs'].astype(str)
|
|
df_count1 = df_count.groupby('xs').mean().reset_index()
|
|
df_count2 = df_count.groupby('xs').count().reset_index()
|
|
|
|
plt.xlabel('label count')
|
|
plt.ylabel('f score mean')
|
|
df_count1['xs'] = df_count1['xs'].astype(int)
|
|
plt.scatter(df_count1['xs'], df_count1['ys'], color='red')
|
|
plt.show()
|
|
|
|
plt.xlabel('label count')
|
|
plt.ylabel('protein num')
|
|
df_count2['xs'] = df_count2['xs'].astype(int)
|
|
plt.bar(df_count2['xs'], df_count2['ys'], color='red')
|
|
plt.show()
|
|
'''
|
|
|
|
|
|
|
|
print("准备加入祖先后的数据......")
|
|
train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_exp/train_{}.csv'.format(cat), sep='|')
|
|
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_exp/test_{}.csv'.format(cat), sep='|')
|
|
train = train.groupby('name').agg({'GO_label': list}).reset_index()
|
|
test = test.groupby('name').agg({'GO_label': list}).reset_index()
|
|
|
|
def prop(df):
|
|
prop_annotations = []
|
|
for i, row in df.iterrows():
|
|
|
|
annot_set = set()
|
|
annots = row['GO_label']
|
|
for go_id in annots:
|
|
annot_set |= go.get_anchestors(go_id)
|
|
annots = list(annot_set)
|
|
prop_annotations.append(annots)
|
|
df['prop_annotations'] = prop_annotations
|
|
return df
|
|
|
|
train = prop(train)
|
|
test = prop(test)
|
|
|
|
train_test = pd.concat([train, test])
|
|
get_term(train_test)
|
|
del train_test
|
|
|
|
def pred_text_to_go(df):
|
|
df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))
|
|
|
|
df['pred_list'] = df['pred'].apply(lambda x: [i.strip() for i in x.split(';')])
|
|
|
|
t0 = time.time()
|
|
txt_dict = {}
|
|
|
|
all_txt = []
|
|
for txt in df['pred_list']:
|
|
if type(txt) == str:
|
|
all_txt.extend(eval(txt))
|
|
else:
|
|
all_txt.extend(txt)
|
|
|
|
all_txt = list(set(all_txt))
|
|
if '' in all_txt:
|
|
all_txt.remove('')
|
|
|
|
n = len(all_txt)
|
|
thread = 40
|
|
size = int(n / thread)
|
|
inds = list(range(0, n, size))
|
|
inds.append(n)
|
|
all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]
|
|
|
|
with Pool(processes=thread) as pool:
|
|
result = pool.map(fuzzy_match, all_txt_sep)
|
|
pool.close()
|
|
pool.join()
|
|
for d in result:
|
|
txt_dict.update(d)
|
|
|
|
|
|
|
|
|
|
df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
|
|
df['pred_list'] = df['pred_list'].apply(lambda x: list(set(x)))
|
|
print("fuzzy matching time: {}".format(time.time() - t0))
|
|
|
|
df['pred_list_go'] = df['pred_list'].apply(lambda x: [go_map(i) for i in x])
|
|
return df
|
|
|
|
|
|
train_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output_exp/predict_concat_train{}.csv'.format(cat), sep='|')
|
|
test_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output_exp/predict_concat_test{}.csv'.format(cat), sep='|')
|
|
|
|
train_pred = pred_text_to_go(train_pred)
|
|
test_pred = pred_text_to_go(test_pred)
|
|
|
|
train_data = pd.merge(train[['name', 'prop_annotations']],
|
|
train_pred[['name', 'pred_list_go']],
|
|
on='name', how='inner')
|
|
train_data = train_data.drop_duplicates('name')
|
|
train_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/train_data.pkl'.format(cat))
|
|
|
|
test_data = pd.merge(test[['name', 'prop_annotations']],
|
|
test_pred[['name', 'pred_list_go']],
|
|
on='name', how='inner')
|
|
test_data = test_data.drop_duplicates('name')
|
|
test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/test_data.pkl'.format(cat))
|
|
test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/valid_data.pkl'.format(cat))
|
|
|
|
|