|
import math
|
|
import numpy as np
|
|
import matplotlib
|
|
import cv2
|
|
|
|
|
|
def padRightDownCorner(img, stride, padValue):
|
|
h = img.shape[0]
|
|
w = img.shape[1]
|
|
|
|
pad = 4 * [None]
|
|
pad[0] = 0
|
|
pad[1] = 0
|
|
pad[2] = 0 if (h % stride == 0) else stride - (h % stride)
|
|
pad[3] = 0 if (w % stride == 0) else stride - (w % stride)
|
|
|
|
img_padded = img
|
|
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
|
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
|
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
|
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
|
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
|
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
|
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
|
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
|
|
|
return img_padded, pad
|
|
|
|
|
|
def transfer(model, model_weights):
|
|
transfered_model_weights = {}
|
|
for weights_name in model.state_dict().keys():
|
|
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
|
return transfered_model_weights
|
|
|
|
|
|
def draw_bodypose(canvas, candidate, subset):
|
|
stickwidth = 4
|
|
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
|
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
|
[1, 16], [16, 18], [3, 17], [6, 18]]
|
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
|
for i in range(18):
|
|
for n in range(len(subset)):
|
|
index = int(subset[n][i])
|
|
if index == -1:
|
|
continue
|
|
x, y = candidate[index][0:2]
|
|
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
|
for i in range(17):
|
|
for n in range(len(subset)):
|
|
index = subset[n][np.array(limbSeq[i]) - 1]
|
|
if -1 in index:
|
|
continue
|
|
cur_canvas = canvas.copy()
|
|
Y = candidate[index.astype(int), 0]
|
|
X = candidate[index.astype(int), 1]
|
|
mX = np.mean(X)
|
|
mY = np.mean(Y)
|
|
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
|
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
|
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
|
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
|
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
|
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
|
|
|
for peaks in all_hand_peaks:
|
|
for ie, e in enumerate(edges):
|
|
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
|
x1, y1 = peaks[e[0]]
|
|
x2, y2 = peaks[e[1]]
|
|
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
|
|
|
for i, keyponit in enumerate(peaks):
|
|
x, y = keyponit
|
|
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
|
if show_number:
|
|
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
|
return canvas
|
|
|
|
|
|
|
|
def handDetect(candidate, subset, oriImg):
|
|
|
|
|
|
ratioWristElbow = 0.33
|
|
detect_result = []
|
|
image_height, image_width = oriImg.shape[0:2]
|
|
for person in subset.astype(int):
|
|
|
|
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
|
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
|
if not (has_left or has_right):
|
|
continue
|
|
hands = []
|
|
|
|
if has_left:
|
|
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
|
x1, y1 = candidate[left_shoulder_index][:2]
|
|
x2, y2 = candidate[left_elbow_index][:2]
|
|
x3, y3 = candidate[left_wrist_index][:2]
|
|
hands.append([x1, y1, x2, y2, x3, y3, True])
|
|
|
|
if has_right:
|
|
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
|
x1, y1 = candidate[right_shoulder_index][:2]
|
|
x2, y2 = candidate[right_elbow_index][:2]
|
|
x3, y3 = candidate[right_wrist_index][:2]
|
|
hands.append([x1, y1, x2, y2, x3, y3, False])
|
|
|
|
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x3 + ratioWristElbow * (x3 - x2)
|
|
y = y3 + ratioWristElbow * (y3 - y2)
|
|
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
|
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
|
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
|
|
|
|
|
|
|
x -= width / 2
|
|
y -= width / 2
|
|
|
|
if x < 0: x = 0
|
|
if y < 0: y = 0
|
|
width1 = width
|
|
width2 = width
|
|
if x + width > image_width: width1 = image_width - x
|
|
if y + width > image_height: width2 = image_height - y
|
|
width = min(width1, width2)
|
|
|
|
if width >= 20:
|
|
detect_result.append([int(x), int(y), int(width), is_left])
|
|
|
|
'''
|
|
return value: [[x, y, w, True if left hand else False]].
|
|
width=height since the network require squared input.
|
|
x, y is the coordinate of top left
|
|
'''
|
|
return detect_result
|
|
|
|
|
|
def npmax(array):
|
|
arrayindex = array.argmax(1)
|
|
arrayvalue = array.max(1)
|
|
i = arrayvalue.argmax()
|
|
j = arrayindex[i]
|
|
return i, j
|
|
|