wenkai's picture
Upload 560 files
a43ef32 verified
raw
history blame
14 kB
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from transformers import T5TokenizerFast
from lavis.common.registry import registry
from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train
from lavis.models.blip2_models.modeling_t5 import T5Config, T5ForConditionalGeneration
@registry.register_model("blip2_t5")
class Blip2T5(Blip2Base):
"""
BLIP2 T5 model.
Supported model types:
- pretrain_flant5xl: pretrained model with FlanT5-XL
- pretrain_flant5xl_vitL: pretrained model with FlanT5-XL
- pretrain_flant5xxl: pretrained model with FlanT5-XXL
- caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2_t5", "pretrain_flant5xl")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_flant5xl": "configs/models/blip2/blip2_pretrain_flant5xl.yaml",
"pretrain_flant5xl_vitL": "configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml",
"pretrain_flant5xxl": "configs/models/blip2/blip2_pretrain_flant5xxl.yaml",
"caption_coco_flant5xl": "configs/models/blip2/blip2_caption_flant5xl.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
t5_model="google/flan-t5-xl",
prompt="",
max_txt_len=32,
apply_lemmatizer=False,
):
"""
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
"""
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model)
t5_config = T5Config.from_pretrained(t5_model)
t5_config.dense_act_fn = "gelu"
self.t5_model = T5ForConditionalGeneration.from_pretrained(
t5_model, config=t5_config
)
for name, param in self.t5_model.named_parameters():
param.requires_grad = False
param.data = param.data.bfloat16()
self.t5_proj = nn.Linear(
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.prompt = prompt
self._apply_lemmatizer = apply_lemmatizer
self._lemmatizer = None
def forward(self, samples):
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
with self.maybe_autocast(dtype=torch.bfloat16):
input_tokens = self.t5_tokenizer(
samples["text_input"],
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
output_tokens = self.t5_tokenizer(
samples["text_output"],
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
targets = output_tokens.input_ids.masked_fill(
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
)
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
decoder_attention_mask=output_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=30,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_embeds = image_embeds.float()
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = self.prompt
if isinstance(prompt, str):
prompt = [prompt] * image.size(0)
else:
assert len(prompt) == image.size(
0
), "The number of prompts must be equal to the batch size."
input_tokens = self.t5_tokenizer(
prompt, padding="longest", return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
with self.maybe_autocast(dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
output_text = self.t5_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
return output_text
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=-1,
**kwargs
):
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_embeds = image_embeds.float()
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
if prompt:
text_input = [prompt.format(question) for question in samples["text_input"]]
else:
text_input = samples["text_input"]
input_tokens = self.t5_tokenizer(
text_input, padding="longest", return_tensors="pt"
).to(image.device)
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
with self.maybe_autocast(dtype=torch.bfloat16):
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
outputs = self.t5_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=encoder_atts,
do_sample=False,
num_beams=num_beams,
max_new_tokens=max_len,
min_length=min_len,
length_penalty=length_penalty,
)
output_text = self.t5_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
if self._apply_lemmatizer:
output_text = self._lemmatize(output_text)
return output_text
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
t5_model = cfg.get("t5_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 32)
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
t5_model=t5_model,
prompt=prompt,
max_txt_len=max_txt_len,
apply_lemmatizer=apply_lemmatizer,
)
model.load_checkpoint_from_config(cfg)
return model