|
import os
|
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
|
|
|
import torch
|
|
import numpy as np
|
|
from . import util
|
|
from .body import Body
|
|
from .hand import Hand
|
|
from annotator.util import annotator_ckpts_path
|
|
|
|
|
|
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
|
|
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
|
|
|
|
|
|
class OpenposeDetector:
|
|
def __init__(self):
|
|
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth")
|
|
hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth")
|
|
|
|
if not os.path.exists(hand_modelpath):
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path)
|
|
load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path)
|
|
|
|
self.body_estimation = Body(body_modelpath)
|
|
self.hand_estimation = Hand(hand_modelpath)
|
|
|
|
def __call__(self, oriImg, hand=False):
|
|
oriImg = oriImg[:, :, ::-1].copy()
|
|
with torch.no_grad():
|
|
candidate, subset = self.body_estimation(oriImg)
|
|
canvas = np.zeros_like(oriImg)
|
|
canvas = util.draw_bodypose(canvas, candidate, subset)
|
|
if hand:
|
|
hands_list = util.handDetect(candidate, subset, oriImg)
|
|
all_hand_peaks = []
|
|
for x, y, w, is_left in hands_list:
|
|
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
|
|
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
|
|
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
|
|
all_hand_peaks.append(peaks)
|
|
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
|
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
|
|
|