|
"""
|
|
# Copyright (c) 2022, salesforce.com, inc.
|
|
# All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import numpy as np
|
|
import streamlit as st
|
|
import torch
|
|
from lavis.models import BlipBase, load_model
|
|
from matplotlib import pyplot as plt
|
|
from PIL import Image
|
|
from scipy.ndimage import filters
|
|
from skimage import transform as skimage_transform
|
|
|
|
|
|
def resize_img(raw_img):
|
|
w, h = raw_img.size
|
|
scaling_factor = 240 / w
|
|
resized_image = raw_img.resize((int(w * scaling_factor), int(h * scaling_factor)))
|
|
return resized_image
|
|
|
|
|
|
def read_img(filepath):
|
|
raw_image = Image.open(filepath).convert("RGB")
|
|
|
|
return raw_image
|
|
|
|
|
|
@st.cache(
|
|
hash_funcs={
|
|
torch.nn.parameter.Parameter: lambda parameter: parameter.data.detach()
|
|
.cpu()
|
|
.numpy()
|
|
},
|
|
allow_output_mutation=True,
|
|
)
|
|
def load_model_cache(name, model_type, is_eval, device):
|
|
return load_model(name, model_type, is_eval, device)
|
|
|
|
|
|
@st.cache(allow_output_mutation=True)
|
|
def init_bert_tokenizer():
|
|
tokenizer = BlipBase.init_tokenizer()
|
|
return tokenizer
|
|
|
|
|
|
def getAttMap(img, attMap, blur=True, overlap=True):
|
|
attMap -= attMap.min()
|
|
if attMap.max() > 0:
|
|
attMap /= attMap.max()
|
|
attMap = skimage_transform.resize(attMap, (img.shape[:2]), order=3, mode="constant")
|
|
if blur:
|
|
attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2]))
|
|
attMap -= attMap.min()
|
|
attMap /= attMap.max()
|
|
cmap = plt.get_cmap("jet")
|
|
attMapV = cmap(attMap)
|
|
attMapV = np.delete(attMapV, 3, 2)
|
|
if overlap:
|
|
attMap = (
|
|
1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img
|
|
+ (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV
|
|
)
|
|
return attMap
|
|
|
|
|
|
@st.cache(
|
|
hash_funcs={
|
|
torch.nn.parameter.Parameter: lambda parameter: parameter.data.detach()
|
|
.cpu()
|
|
.numpy()
|
|
},
|
|
allow_output_mutation=True,
|
|
)
|
|
def load_blip_itm_model(device, model_type="base"):
|
|
model = load_model(
|
|
"blip_image_text_matching", model_type, is_eval=True, device=device
|
|
)
|
|
return model
|
|
|