FAPM_demo / esm /data.py
wenkai's picture
Upload 31 files
3f0529e verified
raw
history blame
17.2 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import os
from typing import Sequence, Tuple, List, Union
import pickle
import re
import shutil
import torch
from pathlib import Path
from esm.constants import proteinseq_toks
RawMSA = Sequence[Tuple[str, str]]
class FastaBatchedDataset(object):
def __init__(self, sequence_labels, sequence_strs):
self.sequence_labels = list(sequence_labels)
self.sequence_strs = list(sequence_strs)
@classmethod
def from_file(cls, fasta_file):
sequence_labels, sequence_strs = [], []
cur_seq_label = None
buf = []
def _flush_current_seq():
nonlocal cur_seq_label, buf
if cur_seq_label is None:
return
sequence_labels.append(cur_seq_label)
sequence_strs.append("".join(buf))
cur_seq_label = None
buf = []
with open(fasta_file, "r") as infile:
for line_idx, line in enumerate(infile):
if line.startswith(">"): # label line
_flush_current_seq()
line = line[1:].strip()
if len(line) > 0:
cur_seq_label = line
else:
cur_seq_label = f"seqnum{line_idx:09d}"
else: # sequence line
buf.append(line.strip())
_flush_current_seq()
assert len(set(sequence_labels)) == len(
sequence_labels
), "Found duplicate sequence labels"
return cls(sequence_labels, sequence_strs)
def __len__(self):
return len(self.sequence_labels)
def __getitem__(self, idx):
return self.sequence_labels[idx], self.sequence_strs[idx]
def get_batch_indices(self, toks_per_batch, extra_toks_per_seq=0):
sizes = [(len(s), i) for i, s in enumerate(self.sequence_strs)]
sizes.sort()
batches = []
buf = []
max_len = 0
def _flush_current_buf():
nonlocal max_len, buf
if len(buf) == 0:
return
batches.append(buf)
buf = []
max_len = 0
for sz, i in sizes:
sz += extra_toks_per_seq
if max(sz, max_len) * (len(buf) + 1) > toks_per_batch:
_flush_current_buf()
max_len = max(max_len, sz)
buf.append(i)
_flush_current_buf()
return batches
class Alphabet(object):
def __init__(
self,
standard_toks: Sequence[str],
prepend_toks: Sequence[str] = ("<null_0>", "<pad>", "<eos>", "<unk>"),
append_toks: Sequence[str] = ("<cls>", "<mask>", "<sep>"),
prepend_bos: bool = True,
append_eos: bool = False,
use_msa: bool = False,
):
self.standard_toks = list(standard_toks)
self.prepend_toks = list(prepend_toks)
self.append_toks = list(append_toks)
self.prepend_bos = prepend_bos
self.append_eos = append_eos
self.use_msa = use_msa
self.all_toks = list(self.prepend_toks)
self.all_toks.extend(self.standard_toks)
for i in range((8 - (len(self.all_toks) % 8)) % 8):
self.all_toks.append(f"<null_{i + 1}>")
self.all_toks.extend(self.append_toks)
self.tok_to_idx = {tok: i for i, tok in enumerate(self.all_toks)}
self.unk_idx = self.tok_to_idx["<unk>"]
self.padding_idx = self.get_idx("<pad>")
self.cls_idx = self.get_idx("<cls>")
self.mask_idx = self.get_idx("<mask>")
self.eos_idx = self.get_idx("<eos>")
self.all_special_tokens = ['<eos>', '<unk>', '<pad>', '<cls>', '<mask>']
self.unique_no_split_tokens = self.all_toks
def __len__(self):
return len(self.all_toks)
def get_idx(self, tok):
return self.tok_to_idx.get(tok, self.unk_idx)
def get_tok(self, ind):
return self.all_toks[ind]
def to_dict(self):
return self.tok_to_idx.copy()
def get_batch_converter(self, truncation_seq_length: int = None):
if self.use_msa:
return MSABatchConverter(self, truncation_seq_length)
else:
return BatchConverter(self, truncation_seq_length)
@classmethod
def from_architecture(cls, name: str) -> "Alphabet":
if name in ("ESM-1", "protein_bert_base"):
standard_toks = proteinseq_toks["toks"]
prepend_toks: Tuple[str, ...] = ("<null_0>", "<pad>", "<eos>", "<unk>")
append_toks: Tuple[str, ...] = ("<cls>", "<mask>", "<sep>")
prepend_bos = True
append_eos = False
use_msa = False
elif name in ("ESM-1b", "roberta_large"):
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<cls>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>",)
prepend_bos = True
append_eos = True
use_msa = False
elif name in ("MSA Transformer", "msa_transformer"):
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<cls>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>",)
prepend_bos = True
append_eos = False
use_msa = True
elif "invariant_gvp" in name.lower():
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<null_0>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>", "<cath>", "<af2>")
prepend_bos = True
append_eos = False
use_msa = False
else:
raise ValueError("Unknown architecture selected")
return cls(standard_toks, prepend_toks, append_toks, prepend_bos, append_eos, use_msa)
def _tokenize(self, text) -> str:
return text.split()
def tokenize(self, text, **kwargs) -> List[str]:
"""
Inspired by https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py
Converts a string in a sequence of tokens, using the tokenizer.
Args:
text (:obj:`str`):
The sequence to be encoded.
Returns:
:obj:`List[str]`: The list of tokens.
"""
def split_on_token(tok, text):
result = []
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# AddedToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# We strip left and right by default
if i < len(split_text) - 1:
sub_text = sub_text.rstrip()
if i > 0:
sub_text = sub_text.lstrip()
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self.unique_no_split_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._tokenize(token)
if token not in self.unique_no_split_tokens
else [token]
for token in tokenized_text
)
)
)
no_split_token = self.unique_no_split_tokens
tokenized_text = split_on_tokens(no_split_token, text)
return tokenized_text
def encode(self, text):
return [self.tok_to_idx[tok] for tok in self.tokenize(text)]
class BatchConverter(object):
"""Callable to convert an unprocessed (labels + strings) batch to a
processed (labels + tensor) batch.
"""
def __init__(self, alphabet, truncation_seq_length: int = None):
self.alphabet = alphabet
self.truncation_seq_length = truncation_seq_length
def __call__(self, raw_batch: Sequence[Tuple[str, str]]):
# RoBERTa uses an eos token, while ESM-1 does not.
batch_size = len(raw_batch)
batch_labels, seq_str_list = zip(*raw_batch)
seq_encoded_list = [self.alphabet.encode(seq_str) for seq_str in seq_str_list]
if self.truncation_seq_length:
seq_encoded_list = [seq_str[:self.truncation_seq_length] for seq_str in seq_encoded_list]
max_len = max(len(seq_encoded) for seq_encoded in seq_encoded_list)
tokens = torch.empty(
(
batch_size,
max_len + int(self.alphabet.prepend_bos) + int(self.alphabet.append_eos),
),
dtype=torch.int64,
)
tokens.fill_(self.alphabet.padding_idx)
labels = []
strs = []
for i, (label, seq_str, seq_encoded) in enumerate(
zip(batch_labels, seq_str_list, seq_encoded_list)
):
labels.append(label)
strs.append(seq_str)
if self.alphabet.prepend_bos:
tokens[i, 0] = self.alphabet.cls_idx
seq = torch.tensor(seq_encoded, dtype=torch.int64)
tokens[
i,
int(self.alphabet.prepend_bos) : len(seq_encoded)
+ int(self.alphabet.prepend_bos),
] = seq
if self.alphabet.append_eos:
tokens[i, len(seq_encoded) + int(self.alphabet.prepend_bos)] = self.alphabet.eos_idx
return labels, strs, tokens
class MSABatchConverter(BatchConverter):
def __call__(self, inputs: Union[Sequence[RawMSA], RawMSA]):
if isinstance(inputs[0][0], str):
# Input is a single MSA
raw_batch: Sequence[RawMSA] = [inputs] # type: ignore
else:
raw_batch = inputs # type: ignore
batch_size = len(raw_batch)
max_alignments = max(len(msa) for msa in raw_batch)
max_seqlen = max(len(msa[0][1]) for msa in raw_batch)
tokens = torch.empty(
(
batch_size,
max_alignments,
max_seqlen + int(self.alphabet.prepend_bos) + int(self.alphabet.append_eos),
),
dtype=torch.int64,
)
tokens.fill_(self.alphabet.padding_idx)
labels = []
strs = []
for i, msa in enumerate(raw_batch):
msa_seqlens = set(len(seq) for _, seq in msa)
if not len(msa_seqlens) == 1:
raise RuntimeError(
"Received unaligned sequences for input to MSA, all sequence "
"lengths must be equal."
)
msa_labels, msa_strs, msa_tokens = super().__call__(msa)
labels.append(msa_labels)
strs.append(msa_strs)
tokens[i, : msa_tokens.size(0), : msa_tokens.size(1)] = msa_tokens
return labels, strs, tokens
def read_fasta(
path,
keep_gaps=True,
keep_insertions=True,
to_upper=False,
):
with open(path, "r") as f:
for result in read_alignment_lines(
f, keep_gaps=keep_gaps, keep_insertions=keep_insertions, to_upper=to_upper
):
yield result
def read_alignment_lines(
lines,
keep_gaps=True,
keep_insertions=True,
to_upper=False,
):
seq = desc = None
def parse(s):
if not keep_gaps:
s = re.sub("-", "", s)
if not keep_insertions:
s = re.sub("[a-z]", "", s)
return s.upper() if to_upper else s
for line in lines:
# Line may be empty if seq % file_line_width == 0
if len(line) > 0 and line[0] == ">":
if seq is not None:
yield desc, parse(seq)
desc = line.strip().lstrip(">")
seq = ""
else:
assert isinstance(seq, str)
seq += line.strip()
assert isinstance(seq, str) and isinstance(desc, str)
yield desc, parse(seq)
class ESMStructuralSplitDataset(torch.utils.data.Dataset):
"""
Structural Split Dataset as described in section A.10 of the supplement of our paper.
https://doi.org/10.1101/622803
We use the full version of SCOPe 2.07, clustered at 90% sequence identity,
generated on January 23, 2020.
For each SCOPe domain:
- We extract the sequence from the corresponding PDB file
- We extract the 3D coordinates of the Carbon beta atoms, aligning them
to the sequence. We put NaN where Cb atoms are missing.
- From the 3D coordinates, we calculate a pairwise distance map, based
on L2 distance
- We use DSSP to generate secondary structure labels for the corresponding
PDB file. This is also aligned to the sequence. We put - where SSP
labels are missing.
For each SCOPe classification level of family/superfamily/fold (in order of difficulty),
we have split the data into 5 partitions for cross validation. These are provided
in a downloaded splits folder, in the format:
splits/{split_level}/{cv_partition}/{train|valid}.txt
where train is the partition and valid is the concatentation of the remaining 4.
For each SCOPe domain, we provide a pkl dump that contains:
- seq : The domain sequence, stored as an L-length string
- ssp : The secondary structure labels, stored as an L-length string
- dist : The distance map, stored as an LxL numpy array
- coords : The 3D coordinates, stored as an Lx3 numpy array
"""
base_folder = "structural-data"
file_list = [
# url tar filename filename MD5 Hash
(
"https://dl.fbaipublicfiles.com/fair-esm/structural-data/splits.tar.gz",
"splits.tar.gz",
"splits",
"456fe1c7f22c9d3d8dfe9735da52411d",
),
(
"https://dl.fbaipublicfiles.com/fair-esm/structural-data/pkl.tar.gz",
"pkl.tar.gz",
"pkl",
"644ea91e56066c750cd50101d390f5db",
),
]
def __init__(
self,
split_level,
cv_partition,
split,
root_path=os.path.expanduser("~/.cache/torch/data/esm"),
download=False,
):
super().__init__()
assert split in [
"train",
"valid",
], "train_valid must be 'train' or 'valid'"
self.root_path = root_path
self.base_path = os.path.join(self.root_path, self.base_folder)
# check if root path has what you need or else download it
if download:
self.download()
self.split_file = os.path.join(
self.base_path, "splits", split_level, cv_partition, f"{split}.txt"
)
self.pkl_dir = os.path.join(self.base_path, "pkl")
self.names = []
with open(self.split_file) as f:
self.names = f.read().splitlines()
def __len__(self):
return len(self.names)
def _check_exists(self) -> bool:
for (_, _, filename, _) in self.file_list:
fpath = os.path.join(self.base_path, filename)
if not os.path.exists(fpath) or not os.path.isdir(fpath):
return False
return True
def download(self):
if self._check_exists():
print("Files already downloaded and verified")
return
from torchvision.datasets.utils import download_url
for url, tar_filename, filename, md5_hash in self.file_list:
download_path = os.path.join(self.base_path, tar_filename)
download_url(url=url, root=self.base_path, filename=tar_filename, md5=md5_hash)
shutil.unpack_archive(download_path, self.base_path)
def __getitem__(self, idx):
"""
Returns a dict with the following entires
- seq : Str (domain sequence)
- ssp : Str (SSP labels)
- dist : np.array (distance map)
- coords : np.array (3D coordinates)
"""
name = self.names[idx]
pkl_fname = os.path.join(self.pkl_dir, name[1:3], f"{name}.pkl")
with open(pkl_fname, "rb") as f:
obj = pickle.load(f)
return obj