FAPM_demo / lavis /models /clip_vit.py
wenkai's picture
Upload 560 files
a43ef32 verified
raw
history blame
10.4 kB
from collections import OrderedDict
from itertools import repeat
import collections.abc
import math
import torch
import torch.nn.functional as F
from torch import nn
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from lavis.models.eva_vit import convert_weights_to_fp16
from lavis.common.dist_utils import download_cached_file
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu3(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x[0]
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
if use_grad_checkpointing:
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, use_grad_checkpointing and i>12) for i in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, use_grad_checkpointing: bool):
super().__init__()
self.input_resolution = input_resolution
self.num_features = width
self.num_heads = heads
self.num_patches = (input_resolution // patch_size) ** 2
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(self.num_patches + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, use_grad_checkpointing=use_grad_checkpointing)
# self.ln_final = LayerNorm(width)
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
# x = self.ln_final(x)
return x
def get_num_layer(self, var_name=""):
if var_name in ("class_embedding", "positional_embedding", "conv1", "ln_pre"):
return 0
elif var_name.startswith("transformer.resblocks"):
layer_id = int(var_name.split('.')[2])
return layer_id + 1
else:
return len(self.transformer.resblocks)
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
def interpolate_pos_embed(model, state_dict, interpolation: str = 'bicubic', seq_dim=1):
# Rescale the grid of position embeddings when loading from state_dict
old_pos_embed = state_dict.get('positional_embedding', None)
grid_size = round((model.positional_embedding.shape[0] - 1) ** 0.5)
if old_pos_embed is None:
return
grid_size = to_2tuple(grid_size)
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
if new_seq_len == old_pos_embed.shape[0]:
return
if extra_tokens:
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
else:
pos_emb_tok, pos_emb_img = None, old_pos_embed
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
print('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
pos_emb_img = F.interpolate(
pos_emb_img,
size=grid_size,
mode=interpolation,
align_corners=True,
)
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
if pos_emb_tok is not None:
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
else:
new_pos_embed = pos_emb_img
state_dict['positional_embedding'] = new_pos_embed
def create_clip_vit_L(img_size=224,use_checkpoint=False,precision="fp16"):
model = VisionTransformer(
input_resolution=img_size,
patch_size=14,
width=1024,
layers=23,
heads=16,
use_grad_checkpointing=use_checkpoint,
)
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/clip_vit_L.pth"
cached_file = download_cached_file(
url, check_hash=False, progress=True
)
state_dict = torch.load(cached_file, map_location="cpu")
interpolate_pos_embed(model,state_dict)
incompatible_keys = model.load_state_dict(state_dict, strict=False)
# print(incompatible_keys)
if precision == "fp16":
convert_weights_to_fp16(model)
return model