wenkai's picture
Upload 560 files
a43ef32 verified
raw
history blame
43.2 kB
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
from lavis.common.registry import registry
from lavis.models.base_model import all_gather_with_grad, concat_all_gather
from lavis.models.blip2_models.blip2 import (
Blip2Base,
Blip2ProteinBase,
compute_sim_matrix,
disabled_train,
)
from lavis.models.blip_models.blip_outputs import BlipOutput, BlipOutputFeatures
import esm
from torch.nn.utils.rnn import pad_sequence
import random
import re
def comb(s):
s_list = [i.strip() for i in s.split(';')]
random.shuffle(s_list)
return '; '.join(s_list)
@registry.register_model("blip2")
@registry.register_model("blip2_feature_extractor")
class Blip2Qformer(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/blip2/blip2_pretrain.yaml",
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
"coco": "configs/models/blip2/blip2_coco.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
cross_attention_freq=2,
embed_dim=256,
max_txt_len=32,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features, cross_attention_freq
)
self.Qformer.resize_token_embeddings(len(self.tokenizer))
state_dict = self.Qformer.state_dict()
for name, param in self.Qformer.named_parameters():
if "_query" in name:
key_orig = name.replace("_query", "")
param.data.copy_(state_dict[key_orig])
self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.max_txt_len = max_txt_len
def forward(self, samples):
image = samples["image"]
text = samples["text_input"]
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
use_cache=True,
return_dict=True,
)
image_feats = F.normalize(
self.vision_proj(query_output.last_hidden_state), dim=-1
)
text_tokens = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
###============== Image-text Contrastive ===================###
image_feats_all = concat_all_gather(
image_feats
) # [batch_size*num_gpu, num_query_tokens, embed_dim]
text_feat_all = concat_all_gather(text_feat) # [batch_size*num_gpu, embed_dim]
sim_q2t = torch.matmul(
image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)
).squeeze()
# [batch_size, batch_size*num_gpu, num_query_tokens]
# image-text similarity: aggregate across all query tokens
sim_i2t, _ = sim_q2t.max(-1)
sim_i2t = sim_i2t / self.temp
# text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
sim_t2q = torch.matmul(
text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)
).squeeze()
# text-image similarity: aggregate across all query tokens
sim_t2i, _ = sim_t2q.max(-1)
sim_t2i = sim_t2i / self.temp # [batch_size, batch_size*num_gpu]
rank = dist.get_rank()
bs = image.size(0)
targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(
image.device
)
if "image_id" in samples.keys(): #coco retrieval finetuning
image_ids = samples["image_id"].view(-1,1)
image_ids_all = concat_all_gather(image_ids)
pos_idx = torch.eq(image_ids, image_ids_all.t()).float()
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
sim_targets = 0.9 * sim_targets + 0.1 * torch.ones_like(sim_targets) / sim_targets.size(1)
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_targets,dim=1).mean()
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_targets,dim=1).mean()
loss_itc = (loss_t2i+loss_i2t)/2
else:
loss_itc = (
F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)
) / 2
###============== Image-text Matching ===================###
text_input_ids_world = concat_all_gather(text_tokens.input_ids)
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask)
image_embeds_world = all_gather_with_grad(image_embeds)
with torch.no_grad():
if "image_id" in samples.keys():
mask = torch.eq(image_ids, image_ids_all.t())
sim_t2i.masked_fill_(mask, -10000)
sim_i2t.masked_fill_(mask, -10000)
else:
sim_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
sim_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
weights_t2i = F.softmax(sim_t2i, dim=1)
weights_i2t = F.softmax(sim_i2t, dim=1)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(text_input_ids_world[neg_idx])
text_atts_neg.append(text_attention_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to(
image.device
)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
image_embeds_all = torch.cat(
[image_embeds, image_embeds_neg, image_embeds], dim=0
) # pos, neg, pos
image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to(
image.device
)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :]
vl_output = self.itm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(image.device)
loss_itm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
decoder_input_ids = text_tokens.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image.device
)
attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_itc + loss_itm + loss_lm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_lm=loss_lm,
)
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
image_embeds = self.ln_vision(self.visual_encoder(image))
if not use_nucleus_sampling:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
else:
num_beams = 1
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
input_ids = (
torch.LongTensor(image.size(0), 1)
.fill_(self.tokenizer.bos_token_id)
.to(image.device)
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
outputs = self.Qformer.generate(
input_ids=input_ids,
query_embeds=query_tokens,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
do_sample=use_nucleus_sampling,
top_p=top_p,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return captions
def forward_image(self, image):
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state, image_embeds
def forward_text(self, text_tokens):
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
return text_output.last_hidden_state[:, 0, :]
def compute_itm(self, image_inputs, text_ids, text_atts):
image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
attention_mask = torch.cat([query_atts, text_atts], dim=1)
output_itm = self.Qformer.bert(
text_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_inputs,
encoder_attention_mask=image_atts,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :]
itm_logit = self.itm_head(vl_embeddings)
itm_logit = itm_logit[:, :, 1].mean(dim=1)
return itm_logit
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
See lavis/models/blip_models/blip_outputs.py for more details.
"""
image = samples.get("image")
caption = samples.get("text_input")
# assert mode is one of "image", "text", "multimodal"
assert mode in [
"image",
"text",
"multimodal",
], "mode must be one of 'image', 'text', 'multimodal'"
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if mode == "image":
assert (
image is not None
), "Image is not provided for mode 'image' or 'multimodal'"
# return query features
with self.maybe_autocast():
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
image_embeds_frozen = image_embeds_frozen.float()
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(image.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
image_embeds = query_output.last_hidden_state
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)
elif mode == "text":
assert (
caption is not None
), "text input is None for mode 'text' or 'multimodal'"
# return text features
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
image.device
)
text_output = self.Qformer.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
)
text_embeds = text_output.last_hidden_state
text_features = self.text_proj(text_embeds)
text_features = F.normalize(text_features, dim=-1)
elif mode == "multimodal":
# return multimodel query features
with self.maybe_autocast():
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
image_embeds_frozen = image_embeds_frozen.float()
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(image.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image.device
)
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
image.device
)
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
output = self.Qformer.bert(
text.input_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
multimodal_embeds = output.last_hidden_state[:, : query_tokens.size(1), :]
return BlipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
cross_attention_freq = cfg.get("cross_attention_freq", 2)
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
max_txt_len = cfg.get("max_txt_len", 32)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
cross_attention_freq=cross_attention_freq,
max_txt_len=max_txt_len,
)
model.load_checkpoint_from_config(cfg)
return model
def compute_sim_matrix(self, data_loader, task_cfg):
"""
Compute similarity i2t, t2i matrix for the given data loader.
"""
k_test = task_cfg.k_test
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)
@registry.register_model("blip2_protein")
@registry.register_model("blip2_protein_feature_extractor")
class Blip2ProteinQformer(Blip2ProteinBase):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/blip2/blip2_pretrain.yaml",
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
"coco": "configs/models/blip2/blip2_coco.yaml",
}
def __init__(
self,
freeze_vit=True,
num_query_token=32,
cross_attention_freq=2,
embed_dim=256,
max_txt_len=32,
max_protein_len=128,
esm_size='650m'
):
super().__init__()
self.tokenizer = self.init_tokenizer()
'''
self.ln_vision, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
if freeze_vit:
self.ln_vision = self.ln_vision.half()
self.vis_layers = self.ln_vision.num_layers
self.visual_encoder = alphabet.get_batch_converter(truncation_seq_length=max_protein_len)
self.padding_idx = alphabet.padding_idx
if freeze_vit:
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
'''
if esm_size == '650m':
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, 1280, cross_attention_freq)
elif esm_size == '3b':
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, 2560, cross_attention_freq)
self.Qformer.resize_token_embeddings(len(self.tokenizer))
state_dict = self.Qformer.state_dict()
for name, param in self.Qformer.named_parameters():
if "_query" in name:
key_orig = name.replace("_query", "")
param.data.copy_(state_dict[key_orig])
self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.max_txt_len = max_txt_len
def forward(self, samples):
#image = samples["image"]
text = [comb(t) for t in samples["text_input"]]
text = samples["text_input"]
#image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
#_, _, batch_tokens = self.visual_encoder(image)
#image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
image_embeds = samples['image']
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
use_cache=True,
return_dict=True,
)
image_feats = F.normalize(
self.vision_proj(query_output.last_hidden_state), dim=-1
)
text_tokens = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
###============== Image-text Contrastive ===================###
image_feats_all = concat_all_gather(
image_feats
) # [batch_size*num_gpu, num_query_tokens, embed_dim]
text_feat_all = concat_all_gather(text_feat) # [batch_size*num_gpu, embed_dim]
sim_q2t = torch.matmul(
image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)
).squeeze()
# [batch_size, batch_size*num_gpu, num_query_tokens]
# image-text similarity: aggregate across all query tokens
sim_i2t, _ = sim_q2t.max(-1)
sim_i2t = sim_i2t / self.temp
# text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
sim_t2q = torch.matmul(
text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)
).squeeze()
# text-image similarity: aggregate across all query tokens
sim_t2i, _ = sim_t2q.max(-1)
sim_t2i = sim_t2i / self.temp # [batch_size, batch_size*num_gpu]
rank = dist.get_rank()
bs = len(text)
targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(
self.device
)
'''
if "image_id" in samples.keys(): #coco retrieval finetuning
image_ids = torch.tensor(samples["image_id"]).view(-1,1)
image_ids_all = concat_all_gather(image_ids)
pos_idx = torch.eq(image_ids, image_ids_all.t()).float()
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
sim_targets = 0.9 * sim_targets + 0.1 * torch.ones_like(sim_targets) / sim_targets.size(1)
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_targets,dim=1).mean()
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_targets,dim=1).mean()
loss_itc = (loss_t2i+loss_i2t)/2
else:
loss_itc = (
F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)
) / 2
'''
loss_itc = (
F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)
) / 2
###============== Image-text Matching ===================###
text_input_ids_world = concat_all_gather(text_tokens.input_ids)
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask)
image_embeds_world = all_gather_with_grad(image_embeds)
with torch.no_grad():
'''
if "image_id" in samples.keys():
mask = torch.eq(image_ids, image_ids_all.t())
sim_t2i.masked_fill_(mask, -10000)
sim_i2t.masked_fill_(mask, -10000)
else:
sim_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
sim_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
'''
sim_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
sim_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
weights_t2i = F.softmax(sim_t2i, dim=1)
weights_i2t = F.softmax(sim_i2t, dim=1)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(text_input_ids_world[neg_idx])
text_atts_neg.append(text_attention_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to(
self.device
)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
image_embeds_all = torch.cat(
[image_embeds, image_embeds_neg, image_embeds], dim=0
) # pos, neg, pos
image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to(
self.device
)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :]
vl_output = self.itm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(self.device)
loss_itm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
decoder_input_ids = text_tokens.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
self.device
)
attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_itc + loss_itm + loss_lm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_lm=loss_lm,
)
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
image = samples["image"]
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
_, _, batch_tokens = self.visual_encoder(image)
image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
if not use_nucleus_sampling:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
else:
num_beams = 1
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
input_ids = (
torch.LongTensor(len(image), 1)
.fill_(self.tokenizer.bos_token_id)
.to(self.device)
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
outputs = self.Qformer.generate(
input_ids=input_ids,
query_embeds=query_tokens,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
do_sample=use_nucleus_sampling,
top_p=top_p,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return captions
def forward_image(self, image):
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
_, _, batch_tokens = self.visual_encoder(image)
image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[30], return_contacts=True)["representations"][30].contiguous()
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state, image_embeds
def forward_text(self, text_tokens):
text_output = self.Qformer.bert(
text_tokens.input_ids,
attention_mask=text_tokens.attention_mask,
return_dict=True,
)
return text_output.last_hidden_state[:, 0, :]
def compute_itm(self, image_inputs, text_ids, text_atts):
image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
image_inputs.device
)
attention_mask = torch.cat([query_atts, text_atts], dim=1)
output_itm = self.Qformer.bert(
text_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_inputs,
encoder_attention_mask=image_atts,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :]
itm_logit = self.itm_head(vl_embeddings)
itm_logit = itm_logit[:, :, 1].mean(dim=1)
return itm_logit
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
See lavis/models/blip_models/blip_outputs.py for more details.
"""
image = samples.get("image")
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
caption = samples.get("text_input")
# assert mode is one of "image", "text", "multimodal"
assert mode in [
"image",
"text",
"multimodal",
], "mode must be one of 'image', 'text', 'multimodal'"
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if mode == "image":
assert (
image is not None
), "Image is not provided for mode 'image' or 'multimodal'"
# return query features
with self.maybe_autocast():
_, _, batch_tokens = self.visual_encoder(image)
image_embeds_frozen = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
image_embeds_frozen = image_embeds_frozen.float()
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(self.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
image_embeds = query_output.last_hidden_state
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)
elif mode == "text":
assert (
caption is not None
), "text input is None for mode 'text' or 'multimodal'"
# return text features
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
text_output = self.Qformer.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
)
text_embeds = text_output.last_hidden_state
text_features = self.text_proj(text_embeds)
text_features = F.normalize(text_features, dim=-1)
elif mode == "multimodal":
# return multimodel query features
with self.maybe_autocast():
_, _, batch_tokens = self.visual_encoder(image)
image_embeds_frozen = self.ln_vision(batch_tokens.to(self.device), repr_layers=[30], return_contacts=True)["representations"][30].contiguous()
image_embeds_frozen = image_embeds_frozen.float()
image_atts = torch.ones(
image_embeds_frozen.size()[:-1], dtype=torch.long
).to(self.device)
query_tokens = self.query_tokens.expand(
image_embeds_frozen.shape[0], -1, -1
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
output = self.Qformer.bert(
text.input_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds_frozen,
encoder_attention_mask=image_atts,
return_dict=True,
)
multimodal_embeds = output.last_hidden_state[:, : query_tokens.size(1), :]
return BlipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg):
num_query_token = cfg.get("num_query_token")
cross_attention_freq = cfg.get("cross_attention_freq", 2)
freeze_vit = cfg.get("freeze_vit", True)
esm_size = cfg.get("esm_size", '650m')
max_txt_len = cfg.get("max_txt_len", 128)
max_protein_len = cfg.get("max_protein_len", 128)
model = cls(
freeze_vit=freeze_vit,
num_query_token=num_query_token,
cross_attention_freq=cross_attention_freq,
max_txt_len=max_txt_len,
max_protein_len=max_protein_len,
esm_size=esm_size,
)
model.load_checkpoint_from_config(cfg)
return model
def compute_sim_matrix(self, data_loader, task_cfg):
"""
Compute similarity i2t, t2i matrix for the given data loader.
"""
k_test = task_cfg.k_test
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)