|
'''
|
|
modified by lihaoweicv
|
|
pytorch version
|
|
'''
|
|
|
|
'''
|
|
M-LSD
|
|
Copyright 2021-present NAVER Corp.
|
|
Apache License v2.0
|
|
'''
|
|
|
|
import os
|
|
import numpy as np
|
|
import cv2
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
|
|
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
|
|
'''
|
|
tpMap:
|
|
center: tpMap[1, 0, :, :]
|
|
displacement: tpMap[1, 1:5, :, :]
|
|
'''
|
|
b, c, h, w = tpMap.shape
|
|
assert b==1, 'only support bsize==1'
|
|
displacement = tpMap[:, 1:5, :, :][0]
|
|
center = tpMap[:, 0, :, :]
|
|
heat = torch.sigmoid(center)
|
|
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
|
|
keep = (hmax == heat).float()
|
|
heat = heat * keep
|
|
heat = heat.reshape(-1, )
|
|
|
|
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
|
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
|
xx = torch.fmod(indices, w).unsqueeze(-1)
|
|
ptss = torch.cat((yy, xx),dim=-1)
|
|
|
|
ptss = ptss.detach().cpu().numpy()
|
|
scores = scores.detach().cpu().numpy()
|
|
displacement = displacement.detach().cpu().numpy()
|
|
displacement = displacement.transpose((1,2,0))
|
|
return ptss, scores, displacement
|
|
|
|
|
|
def pred_lines(image, model,
|
|
input_shape=[512, 512],
|
|
score_thr=0.10,
|
|
dist_thr=20.0):
|
|
h, w, _ = image.shape
|
|
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
|
|
|
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
|
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
|
|
|
resized_image = resized_image.transpose((2,0,1))
|
|
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
|
batch_image = (batch_image / 127.5) - 1.0
|
|
|
|
batch_image = torch.from_numpy(batch_image).float().cuda()
|
|
outputs = model(batch_image)
|
|
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
|
start = vmap[:, :, :2]
|
|
end = vmap[:, :, 2:]
|
|
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
|
|
|
segments_list = []
|
|
for center, score in zip(pts, pts_score):
|
|
y, x = center
|
|
distance = dist_map[y, x]
|
|
if score > score_thr and distance > dist_thr:
|
|
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
|
x_start = x + disp_x_start
|
|
y_start = y + disp_y_start
|
|
x_end = x + disp_x_end
|
|
y_end = y + disp_y_end
|
|
segments_list.append([x_start, y_start, x_end, y_end])
|
|
|
|
lines = 2 * np.array(segments_list)
|
|
lines[:, 0] = lines[:, 0] * w_ratio
|
|
lines[:, 1] = lines[:, 1] * h_ratio
|
|
lines[:, 2] = lines[:, 2] * w_ratio
|
|
lines[:, 3] = lines[:, 3] * h_ratio
|
|
|
|
return lines
|
|
|
|
|
|
def pred_squares(image,
|
|
model,
|
|
input_shape=[512, 512],
|
|
params={'score': 0.06,
|
|
'outside_ratio': 0.28,
|
|
'inside_ratio': 0.45,
|
|
'w_overlap': 0.0,
|
|
'w_degree': 1.95,
|
|
'w_length': 0.0,
|
|
'w_area': 1.86,
|
|
'w_center': 0.14}):
|
|
'''
|
|
shape = [height, width]
|
|
'''
|
|
h, w, _ = image.shape
|
|
original_shape = [h, w]
|
|
|
|
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
|
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
|
resized_image = resized_image.transpose((2, 0, 1))
|
|
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
|
batch_image = (batch_image / 127.5) - 1.0
|
|
|
|
batch_image = torch.from_numpy(batch_image).float().cuda()
|
|
outputs = model(batch_image)
|
|
|
|
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
|
start = vmap[:, :, :2]
|
|
end = vmap[:, :, 2:]
|
|
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
|
|
|
junc_list = []
|
|
segments_list = []
|
|
for junc, score in zip(pts, pts_score):
|
|
y, x = junc
|
|
distance = dist_map[y, x]
|
|
if score > params['score'] and distance > 20.0:
|
|
junc_list.append([x, y])
|
|
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
|
d_arrow = 1.0
|
|
x_start = x + d_arrow * disp_x_start
|
|
y_start = y + d_arrow * disp_y_start
|
|
x_end = x + d_arrow * disp_x_end
|
|
y_end = y + d_arrow * disp_y_end
|
|
segments_list.append([x_start, y_start, x_end, y_end])
|
|
|
|
segments = np.array(segments_list)
|
|
|
|
|
|
|
|
point = np.array([[0, 0]])
|
|
point = point[0]
|
|
start = segments[:, :2]
|
|
end = segments[:, 2:]
|
|
diff = start - end
|
|
a = diff[:, 1]
|
|
b = -diff[:, 0]
|
|
c = a * start[:, 0] + b * start[:, 1]
|
|
|
|
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
|
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
|
theta[theta < 0.0] += 180
|
|
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
|
|
|
d_quant = 1
|
|
theta_quant = 2
|
|
hough[:, 0] //= d_quant
|
|
hough[:, 1] //= theta_quant
|
|
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
|
|
|
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
|
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
|
yx_indices = hough[indices, :].astype('int32')
|
|
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
|
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
|
|
|
acc_map_np = acc_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
|
_,_, h, w = acc_map.shape
|
|
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
|
|
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
|
|
flatten_acc_map = acc_map.reshape([-1, ])
|
|
|
|
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
|
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
|
xx = torch.fmod(indices, w).unsqueeze(-1)
|
|
yx = torch.cat((yy, xx), dim=-1)
|
|
|
|
yx = yx.detach().cpu().numpy()
|
|
|
|
topk_values = scores.detach().cpu().numpy()
|
|
indices = idx_map[yx[:, 0], yx[:, 1]]
|
|
basis = 5 // 2
|
|
|
|
merged_segments = []
|
|
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
|
y, x = yx_pt
|
|
if max_indice == -1 or value == 0:
|
|
continue
|
|
segment_list = []
|
|
for y_offset in range(-basis, basis + 1):
|
|
for x_offset in range(-basis, basis + 1):
|
|
indice = idx_map[y + y_offset, x + x_offset]
|
|
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
|
if indice != -1:
|
|
segment_list.append(segments[indice])
|
|
if cnt > 1:
|
|
check_cnt = 1
|
|
current_hough = hough[indice]
|
|
for new_indice, new_hough in enumerate(hough):
|
|
if (current_hough == new_hough).all() and indice != new_indice:
|
|
segment_list.append(segments[new_indice])
|
|
check_cnt += 1
|
|
if check_cnt == cnt:
|
|
break
|
|
group_segments = np.array(segment_list).reshape([-1, 2])
|
|
sorted_group_segments = np.sort(group_segments, axis=0)
|
|
x_min, y_min = sorted_group_segments[0, :]
|
|
x_max, y_max = sorted_group_segments[-1, :]
|
|
|
|
deg = theta[max_indice]
|
|
if deg >= 90:
|
|
merged_segments.append([x_min, y_max, x_max, y_min])
|
|
else:
|
|
merged_segments.append([x_min, y_min, x_max, y_max])
|
|
|
|
|
|
new_segments = np.array(merged_segments)
|
|
start = new_segments[:, :2]
|
|
end = new_segments[:, 2:]
|
|
new_centers = (start + end) / 2.0
|
|
diff = start - end
|
|
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
|
|
|
|
|
a = diff[:, 1]
|
|
b = -diff[:, 0]
|
|
c = a * start[:, 0] + b * start[:, 1]
|
|
pre_det = a[:, None] * b[None, :]
|
|
det = pre_det - np.transpose(pre_det)
|
|
|
|
pre_inter_y = a[:, None] * c[None, :]
|
|
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
|
pre_inter_x = c[:, None] * b[None, :]
|
|
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
|
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
|
|
|
|
|
|
|
'''
|
|
dist_segments:
|
|
| dist(0), dist(1), dist(2), ...|
|
|
dist_inter_to_segment1:
|
|
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
|
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
|
...
|
|
dist_inter_to_semgnet2:
|
|
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
|
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
|
...
|
|
'''
|
|
|
|
dist_inter_to_segment1_start = np.sqrt(
|
|
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True))
|
|
dist_inter_to_segment1_end = np.sqrt(
|
|
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True))
|
|
dist_inter_to_segment2_start = np.sqrt(
|
|
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True))
|
|
dist_inter_to_segment2_end = np.sqrt(
|
|
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True))
|
|
|
|
|
|
dist_inter_to_segment1 = np.sort(
|
|
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
|
axis=-1)
|
|
dist_inter_to_segment2 = np.sort(
|
|
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
|
axis=-1)
|
|
|
|
|
|
inter_to_start = new_centers[:, None, :] - inter_pts
|
|
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
|
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
|
inter_to_end = new_centers[None, :, :] - inter_pts
|
|
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
|
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
|
|
|
'''
|
|
B -- G
|
|
| |
|
|
C -- R
|
|
B : blue / G: green / C: cyan / R: red
|
|
|
|
0 -- 1
|
|
| |
|
|
3 -- 2
|
|
'''
|
|
|
|
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
|
|
|
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
|
|
|
deg_diff_map = np.abs(deg1_map - deg2_map)
|
|
|
|
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
|
|
|
|
|
deg_range = [60, 120]
|
|
|
|
corner_dict = {corner_info: [] for corner_info in range(4)}
|
|
inter_points = []
|
|
for i in range(inter_pts.shape[0]):
|
|
for j in range(i + 1, inter_pts.shape[1]):
|
|
|
|
x, y = inter_pts[i, j, :]
|
|
deg1, deg2 = deg_sort[i, j, :]
|
|
deg_diff = deg_diff_map[i, j]
|
|
|
|
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
|
|
|
outside_ratio = params['outside_ratio']
|
|
inside_ratio = params['inside_ratio']
|
|
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
|
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
|
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
|
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
|
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
|
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
|
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
|
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
|
|
|
if check_degree and check_distance:
|
|
corner_info = None
|
|
|
|
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
|
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
|
corner_info, color_info = 0, 'blue'
|
|
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
|
corner_info, color_info = 1, 'green'
|
|
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
|
corner_info, color_info = 2, 'black'
|
|
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
|
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
|
corner_info, color_info = 3, 'cyan'
|
|
else:
|
|
corner_info, color_info = 4, 'red'
|
|
continue
|
|
|
|
corner_dict[corner_info].append([x, y, i, j])
|
|
inter_points.append([x, y])
|
|
|
|
square_list = []
|
|
connect_list = []
|
|
segments_list = []
|
|
for corner0 in corner_dict[0]:
|
|
for corner1 in corner_dict[1]:
|
|
connect01 = False
|
|
for corner0_line in corner0[2:]:
|
|
if corner0_line in corner1[2:]:
|
|
connect01 = True
|
|
break
|
|
if connect01:
|
|
for corner2 in corner_dict[2]:
|
|
connect12 = False
|
|
for corner1_line in corner1[2:]:
|
|
if corner1_line in corner2[2:]:
|
|
connect12 = True
|
|
break
|
|
if connect12:
|
|
for corner3 in corner_dict[3]:
|
|
connect23 = False
|
|
for corner2_line in corner2[2:]:
|
|
if corner2_line in corner3[2:]:
|
|
connect23 = True
|
|
break
|
|
if connect23:
|
|
for corner3_line in corner3[2:]:
|
|
if corner3_line in corner0[2:]:
|
|
|
|
'''
|
|
0 -- 1
|
|
| |
|
|
3 -- 2
|
|
square_list:
|
|
order: 0 > 1 > 2 > 3
|
|
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
|
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
|
...
|
|
connect_list:
|
|
order: 01 > 12 > 23 > 30
|
|
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
|
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
|
...
|
|
segments_list:
|
|
order: 0 > 1 > 2 > 3
|
|
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
|
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
|
...
|
|
'''
|
|
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
|
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
|
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
|
|
|
def check_outside_inside(segments_info, connect_idx):
|
|
|
|
if connect_idx == segments_info[0]:
|
|
check_dist_mat = dist_inter_to_segment1
|
|
else:
|
|
check_dist_mat = dist_inter_to_segment2
|
|
|
|
i, j = segments_info
|
|
min_dist, max_dist = check_dist_mat[i, j, :]
|
|
connect_dist = dist_segments[connect_idx]
|
|
if max_dist > connect_dist:
|
|
return 'outside', min_dist, 0, 1
|
|
else:
|
|
return 'inside', min_dist, -1, -1
|
|
|
|
top_square = None
|
|
|
|
try:
|
|
map_size = input_shape[0] / 2
|
|
squares = np.array(square_list).reshape([-1, 4, 2])
|
|
score_array = []
|
|
connect_array = np.array(connect_list)
|
|
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
|
|
|
|
|
squares_rollup = np.roll(squares, 1, axis=1)
|
|
squares_rolldown = np.roll(squares, -1, axis=1)
|
|
vec1 = squares_rollup - squares
|
|
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
|
vec2 = squares_rolldown - squares
|
|
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
|
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1)
|
|
squares_degree = np.arccos(inner_products) * 180 / np.pi
|
|
|
|
|
|
overlap_scores = []
|
|
degree_scores = []
|
|
length_scores = []
|
|
|
|
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
|
'''
|
|
0 -- 1
|
|
| |
|
|
3 -- 2
|
|
|
|
# segments: [4, 2]
|
|
# connects: [4]
|
|
'''
|
|
|
|
|
|
cover = 0
|
|
perimeter = 0
|
|
|
|
square_length = []
|
|
|
|
for start_idx in range(4):
|
|
end_idx = (start_idx + 1) % 4
|
|
|
|
connect_idx = connects[start_idx]
|
|
start_segments = segments[start_idx]
|
|
end_segments = segments[end_idx]
|
|
|
|
start_point = square[start_idx]
|
|
end_point = square[end_idx]
|
|
|
|
|
|
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
|
connect_idx)
|
|
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
|
|
|
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
|
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
|
|
|
square_length.append(
|
|
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
|
|
|
overlap_scores.append(cover / perimeter)
|
|
|
|
|
|
'''
|
|
deg0 vs deg2
|
|
deg1 vs deg3
|
|
'''
|
|
deg0, deg1, deg2, deg3 = degree
|
|
deg_ratio1 = deg0 / deg2
|
|
if deg_ratio1 > 1.0:
|
|
deg_ratio1 = 1 / deg_ratio1
|
|
deg_ratio2 = deg1 / deg3
|
|
if deg_ratio2 > 1.0:
|
|
deg_ratio2 = 1 / deg_ratio2
|
|
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
|
|
|
|
|
'''
|
|
len0 vs len2
|
|
len1 vs len3
|
|
'''
|
|
len0, len1, len2, len3 = square_length
|
|
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
|
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
|
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
|
|
|
|
|
|
|
overlap_scores = np.array(overlap_scores)
|
|
overlap_scores /= np.max(overlap_scores)
|
|
|
|
degree_scores = np.array(degree_scores)
|
|
|
|
|
|
length_scores = np.array(length_scores)
|
|
|
|
|
|
area_scores = np.reshape(squares, [-1, 4, 2])
|
|
area_x = area_scores[:, :, 0]
|
|
area_y = area_scores[:, :, 1]
|
|
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
|
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
|
area_scores = 0.5 * np.abs(area_scores + correction)
|
|
area_scores /= (map_size * map_size)
|
|
|
|
|
|
|
|
centers = np.array([[256 // 2, 256 // 2]], dtype='float32')
|
|
|
|
square_centers = np.mean(squares, axis=1)
|
|
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
|
center_scores = center2center / (map_size / np.sqrt(2.0))
|
|
|
|
'''
|
|
score_w = [overlap, degree, area, center, length]
|
|
'''
|
|
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
|
score_array = params['w_overlap'] * overlap_scores \
|
|
+ params['w_degree'] * degree_scores \
|
|
+ params['w_area'] * area_scores \
|
|
- params['w_center'] * center_scores \
|
|
+ params['w_length'] * length_scores
|
|
|
|
best_square = []
|
|
|
|
sorted_idx = np.argsort(score_array)[::-1]
|
|
score_array = score_array[sorted_idx]
|
|
squares = squares[sorted_idx]
|
|
|
|
except Exception as e:
|
|
pass
|
|
|
|
'''return list
|
|
merged_lines, squares, scores
|
|
'''
|
|
|
|
try:
|
|
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
|
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
|
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
|
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
|
except:
|
|
new_segments = []
|
|
|
|
try:
|
|
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
|
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
|
except:
|
|
squares = []
|
|
score_array = []
|
|
|
|
try:
|
|
inter_points = np.array(inter_points)
|
|
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
|
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
|
except:
|
|
inter_points = []
|
|
|
|
return new_segments, squares, score_array, inter_points
|
|
|