|
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import logging
|
|
import json
|
|
from typing import Dict
|
|
|
|
from omegaconf import OmegaConf
|
|
from lavis.common.registry import registry
|
|
|
|
|
|
class Config:
|
|
def __init__(self, args):
|
|
self.config = {}
|
|
|
|
self.args = args
|
|
|
|
|
|
registry.register("configuration", self)
|
|
|
|
user_config = self._build_opt_list(self.args.options)
|
|
|
|
config = OmegaConf.load(self.args.cfg_path)
|
|
|
|
runner_config = self.build_runner_config(config)
|
|
model_config = self.build_model_config(config, **user_config)
|
|
dataset_config = self.build_dataset_config(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.config = OmegaConf.merge(
|
|
runner_config, model_config, dataset_config, user_config
|
|
)
|
|
|
|
def _validate_runner_config(self, runner_config):
|
|
"""
|
|
This method validates the configuration, such that
|
|
1) all the user specified options are valid;
|
|
2) no type mismatches between the user specified options and the config.
|
|
"""
|
|
runner_config_validator = create_runner_config_validator()
|
|
runner_config_validator.validate(runner_config)
|
|
|
|
def _build_opt_list(self, opts):
|
|
opts_dot_list = self._convert_to_dot_list(opts)
|
|
return OmegaConf.from_dotlist(opts_dot_list)
|
|
|
|
@staticmethod
|
|
def build_model_config(config, **kwargs):
|
|
model = config.get("model", None)
|
|
assert model is not None, "Missing model configuration file."
|
|
|
|
model_cls = registry.get_model_class(model.arch)
|
|
assert model_cls is not None, f"Model '{model.arch}' has not been registered."
|
|
|
|
model_type = kwargs.get("model.model_type", None)
|
|
if not model_type:
|
|
model_type = model.get("model_type", None)
|
|
|
|
|
|
assert model_type is not None, "Missing model_type."
|
|
|
|
model_config_path = model_cls.default_config_path(model_type=model_type)
|
|
|
|
model_config = OmegaConf.create()
|
|
|
|
model_config = OmegaConf.merge(
|
|
model_config,
|
|
OmegaConf.load(model_config_path),
|
|
{"model": config["model"]},
|
|
)
|
|
|
|
return model_config
|
|
|
|
@staticmethod
|
|
def build_runner_config(config):
|
|
return {"run": config.run}
|
|
|
|
@staticmethod
|
|
def build_dataset_config(config):
|
|
datasets = config.get("datasets", None)
|
|
if datasets is None:
|
|
raise KeyError(
|
|
"Expecting 'datasets' as the root key for dataset configuration."
|
|
)
|
|
|
|
dataset_config = OmegaConf.create()
|
|
|
|
for dataset_name in datasets:
|
|
builder_cls = registry.get_builder_class(dataset_name)
|
|
|
|
dataset_config_type = datasets[dataset_name].get("type", "default")
|
|
dataset_config_path = builder_cls.default_config_path(
|
|
type=dataset_config_type
|
|
)
|
|
|
|
|
|
dataset_config = OmegaConf.merge(
|
|
dataset_config,
|
|
OmegaConf.load(dataset_config_path),
|
|
{"datasets": {dataset_name: config["datasets"][dataset_name]}},
|
|
)
|
|
|
|
return dataset_config
|
|
|
|
def _convert_to_dot_list(self, opts):
|
|
if opts is None:
|
|
opts = []
|
|
|
|
if len(opts) == 0:
|
|
return opts
|
|
|
|
has_equal = opts[0].find("=") != -1
|
|
|
|
if has_equal:
|
|
return opts
|
|
|
|
return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
|
|
|
|
def get_config(self):
|
|
return self.config
|
|
|
|
@property
|
|
def run_cfg(self):
|
|
return self.config.run
|
|
|
|
@property
|
|
def datasets_cfg(self):
|
|
return self.config.datasets
|
|
|
|
@property
|
|
def model_cfg(self):
|
|
return self.config.model
|
|
|
|
def pretty_print(self):
|
|
logging.info("\n===== Running Parameters =====")
|
|
logging.info(self._convert_node_to_json(self.config.run))
|
|
|
|
logging.info("\n====== Dataset Attributes ======")
|
|
datasets = self.config.datasets
|
|
|
|
for dataset in datasets:
|
|
if dataset in self.config.datasets:
|
|
logging.info(f"\n======== {dataset} =======")
|
|
dataset_config = self.config.datasets[dataset]
|
|
logging.info(self._convert_node_to_json(dataset_config))
|
|
else:
|
|
logging.warning(f"No dataset named '{dataset}' in config. Skipping")
|
|
|
|
logging.info(f"\n====== Model Attributes ======")
|
|
logging.info(self._convert_node_to_json(self.config.model))
|
|
|
|
def _convert_node_to_json(self, node):
|
|
container = OmegaConf.to_container(node, resolve=True)
|
|
return json.dumps(container, indent=4, sort_keys=True)
|
|
|
|
def to_dict(self):
|
|
return OmegaConf.to_container(self.config)
|
|
|
|
|
|
def node_to_dict(node):
|
|
return OmegaConf.to_container(node)
|
|
|
|
|
|
class ConfigValidator:
|
|
"""
|
|
This is a preliminary implementation to centralize and validate the configuration.
|
|
May be altered in the future.
|
|
|
|
A helper class to validate configurations from yaml file.
|
|
|
|
This serves the following purposes:
|
|
1. Ensure all the options in the yaml are defined, raise error if not.
|
|
2. when type mismatches are found, the validator will raise an error.
|
|
3. a central place to store and display helpful messages for supported configurations.
|
|
|
|
"""
|
|
|
|
class _Argument:
|
|
def __init__(self, name, choices=None, type=None, help=None):
|
|
self.name = name
|
|
self.val = None
|
|
self.choices = choices
|
|
self.type = type
|
|
self.help = help
|
|
|
|
def __str__(self):
|
|
s = f"{self.name}={self.val}"
|
|
if self.type is not None:
|
|
s += f", ({self.type})"
|
|
if self.choices is not None:
|
|
s += f", choices: {self.choices}"
|
|
if self.help is not None:
|
|
s += f", ({self.help})"
|
|
return s
|
|
|
|
def __init__(self, description):
|
|
self.description = description
|
|
|
|
self.arguments = dict()
|
|
|
|
self.parsed_args = None
|
|
|
|
def __getitem__(self, key):
|
|
assert self.parsed_args is not None, "No arguments parsed yet."
|
|
|
|
return self.parsed_args[key]
|
|
|
|
def __str__(self) -> str:
|
|
return self.format_help()
|
|
|
|
def add_argument(self, *args, **kwargs):
|
|
"""
|
|
Assume the first argument is the name of the argument.
|
|
"""
|
|
self.arguments[args[0]] = self._Argument(*args, **kwargs)
|
|
|
|
def validate(self, config=None):
|
|
"""
|
|
Convert yaml config (dict-like) to list, required by argparse.
|
|
"""
|
|
for k, v in config.items():
|
|
assert (
|
|
k in self.arguments
|
|
), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""
|
|
|
|
if self.arguments[k].type is not None:
|
|
try:
|
|
self.arguments[k].val = self.arguments[k].type(v)
|
|
except ValueError:
|
|
raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")
|
|
|
|
if self.arguments[k].choices is not None:
|
|
assert (
|
|
v in self.arguments[k].choices
|
|
), f"""{k} must be one of {self.arguments[k].choices}."""
|
|
|
|
return config
|
|
|
|
def format_arguments(self):
|
|
return str([f"{k}" for k in sorted(self.arguments.keys())])
|
|
|
|
def format_help(self):
|
|
|
|
help_msg = str(self.description)
|
|
return help_msg + ", available arguments: " + self.format_arguments()
|
|
|
|
def print_help(self):
|
|
|
|
print(self.format_help())
|
|
|
|
|
|
def create_runner_config_validator():
|
|
validator = ConfigValidator(description="Runner configurations")
|
|
|
|
validator.add_argument(
|
|
"runner",
|
|
type=str,
|
|
choices=["runner_base", "runner_iter"],
|
|
help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
|
|
runner runs based on iters. Default: runner_base""",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"train_dataset_ratios",
|
|
type=Dict[str, float],
|
|
help="""Ratios of training dataset. This is used in iteration-based runner.
|
|
Do not support for epoch-based runner because how to define an epoch becomes tricky.
|
|
Default: None""",
|
|
)
|
|
validator.add_argument(
|
|
"max_iters",
|
|
type=float,
|
|
help="Maximum number of iterations to run.",
|
|
)
|
|
validator.add_argument(
|
|
"max_epoch",
|
|
type=int,
|
|
help="Maximum number of epochs to run.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"iters_per_inner_epoch",
|
|
type=float,
|
|
help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
|
|
)
|
|
lr_scheds_choices = registry.list_lr_schedulers()
|
|
validator.add_argument(
|
|
"lr_sched",
|
|
type=str,
|
|
choices=lr_scheds_choices,
|
|
help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
|
|
)
|
|
task_choices = registry.list_tasks()
|
|
validator.add_argument(
|
|
"task",
|
|
type=str,
|
|
choices=task_choices,
|
|
help="Task to use, from {}".format(task_choices),
|
|
)
|
|
|
|
validator.add_argument(
|
|
"init_lr",
|
|
type=float,
|
|
help="Initial learning rate. This will be the learning rate after warmup and before decay.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"min_lr",
|
|
type=float,
|
|
help="Minimum learning rate (after decay).",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"warmup_lr",
|
|
type=float,
|
|
help="Starting learning rate for warmup.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"lr_decay_rate",
|
|
type=float,
|
|
help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"weight_decay",
|
|
type=float,
|
|
help="Weight decay rate.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"batch_size_train",
|
|
type=int,
|
|
help="Training batch size.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"batch_size_eval",
|
|
type=int,
|
|
help="Evaluation batch size, including validation and testing.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"num_workers",
|
|
help="Number of workers for data loading.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"warmup_steps",
|
|
type=int,
|
|
help="Number of warmup steps. Required if a warmup schedule is used.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"seed",
|
|
type=int,
|
|
help="Random seed.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"output_dir",
|
|
type=str,
|
|
help="Output directory to save checkpoints and logs.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"evaluate",
|
|
help="Whether to only evaluate the model. If true, training will not be performed.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"train_splits",
|
|
type=list,
|
|
help="Splits to use for training.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"valid_splits",
|
|
type=list,
|
|
help="Splits to use for validation. If not provided, will skip the validation.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"test_splits",
|
|
type=list,
|
|
help="Splits to use for testing. If not provided, will skip the testing.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"accum_grad_iters",
|
|
type=int,
|
|
help="Number of iterations to accumulate gradient for.",
|
|
)
|
|
|
|
|
|
validator.add_argument(
|
|
"device",
|
|
type=str,
|
|
choices=["cpu", "cuda"],
|
|
help="Device to use. Support 'cuda' or 'cpu' as for now.",
|
|
)
|
|
validator.add_argument(
|
|
"world_size",
|
|
type=int,
|
|
help="Number of processes participating in the job.",
|
|
)
|
|
validator.add_argument("dist_url", type=str)
|
|
validator.add_argument("distributed", type=bool)
|
|
|
|
validator.add_argument(
|
|
"use_dist_eval_sampler",
|
|
type=bool,
|
|
help="Whether to use distributed sampler during evaluation or not.",
|
|
)
|
|
|
|
|
|
|
|
|
|
validator.add_argument(
|
|
"max_len",
|
|
type=int,
|
|
help="Maximal length of text output.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"min_len",
|
|
type=int,
|
|
help="Minimal length of text output.",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"num_beams",
|
|
type=int,
|
|
help="Number of beams used for beam search.",
|
|
)
|
|
|
|
|
|
|
|
validator.add_argument(
|
|
"num_ans_candidates",
|
|
type=int,
|
|
help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
|
|
)
|
|
|
|
validator.add_argument(
|
|
"inference_method",
|
|
type=str,
|
|
choices=["genearte", "rank"],
|
|
help="""Inference method to use for question answering. If rank, requires a answer list.""",
|
|
)
|
|
|
|
|
|
validator.add_argument(
|
|
"k_test",
|
|
type=int,
|
|
help="Number of top k most similar samples from ITC/VTC selection to be tested.",
|
|
)
|
|
|
|
return validator
|
|
|