FAPM_demo / app /calculate_coco_features.py
wenkai's picture
Upload 12 files
846a3aa verified
raw
history blame
2.47 kB
"""
# Copyright (c) 2022, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from PIL import Image
import requests
import torch
import os
from lavis.common.registry import registry
from lavis.processors import *
from lavis.models import *
from lavis.common.utils import build_default_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_demo_image():
img_url = (
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
)
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
return raw_image
def read_img(filepath):
raw_image = Image.open(filepath).convert("RGB")
return raw_image
# model
model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth"
feature_extractor = BlipFeatureExtractor(pretrained=model_url)
feature_extractor.eval()
feature_extractor = feature_extractor.to(device)
# preprocessors
vis_processor = BlipImageEvalProcessor(image_size=224)
text_processor = BlipCaptionProcessor()
# files to process
# file_root = "/export/home/.cache/lavis/coco/images/val2014"
file_root = "/export/home/.cache/lavis/coco/images/train2014"
filepaths = os.listdir(file_root)
print(len(filepaths))
caption = "dummy"
path2feat = dict()
bsz = 256
images_in_batch = []
filepaths_in_batch = []
for i, filename in enumerate(filepaths):
if i % bsz == 0 and i > 0:
images_in_batch = torch.cat(images_in_batch, dim=0).to(device)
with torch.no_grad():
image_features = feature_extractor(
images_in_batch, caption, mode="image", normalized=True
)[:, 0]
for filepath, image_feat in zip(filepaths_in_batch, image_features):
path2feat[os.path.basename(filepath)] = image_feat.detach().cpu()
images_in_batch = []
filepaths_in_batch = []
print(len(path2feat), image_features.shape)
else:
filepath = os.path.join(file_root, filename)
image = read_img(filepath)
image = vis_processor(image).unsqueeze(0)
images_in_batch.append(image)
filepaths_in_batch.append(filepath)
torch.save(path2feat, "path2feat_coco_train2014.pth")