|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple |
|
|
|
import torch |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, : x.shape[-2], :] |
|
sin = sin[:, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
The rotary position embeddings from RoFormer_ (Su et. al). |
|
A crucial insight from the method is that the query and keys are |
|
transformed by rotation matrices which depend on the relative positions. |
|
Other implementations are available in the Rotary Transformer repo_ and in |
|
GPT-NeoX_, GPT-NeoX was an inspiration |
|
.. _RoFormer: https://arxiv.org/abs/2104.09864 |
|
.. _repo: https://github.com/ZhuiyiTechnology/roformer |
|
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox |
|
.. warning: Please note that this embedding is not registered on purpose, as it is transformative |
|
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis |
|
""" |
|
|
|
def __init__(self, dim: int, *_, **__): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=1): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, :, :] |
|
self._sin_cached = emb.sin()[None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|