FAPM_demo / esm /esmfold /v1 /pretrained.py
wenkai's picture
Upload 31 files
3f0529e verified
raw
history blame
6.57 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import torch
from esm.esmfold.v1.esmfold import ESMFold
def _load_model(model_name):
if model_name.endswith(".pt"): # local, treat as filepath
model_path = Path(model_name)
model_data = torch.load(str(model_path), map_location="cpu")
else: # load from hub
url = f"https://dl.fbaipublicfiles.com/fair-esm/models/{model_name}.pt"
model_data = torch.hub.load_state_dict_from_url(url, progress=False, map_location="cpu")
cfg = model_data["cfg"]["model"]
model_state = model_data["model"]
model = ESMFold(esmfold_config=cfg)
expected_keys = set(model.state_dict().keys())
found_keys = set(model_state.keys())
missing_essential_keys = []
for missing_key in expected_keys - found_keys:
if not missing_key.startswith("esm."):
missing_essential_keys.append(missing_key)
if missing_essential_keys:
raise RuntimeError(f"Keys '{', '.join(missing_essential_keys)}' are missing.")
model.load_state_dict(model_state, strict=False)
return model
def esmfold_v0():
"""
ESMFold v0 model with 3B ESM-2, 48 folding blocks.
This version was used for the paper (Lin et al, 2022). It was trained
on all PDB chains until 2020-05, to ensure temporal holdout with CASP14
and the CAMEO validation and test set reported there.
"""
return _load_model("esmfold_3B_v0")
def esmfold_v1():
"""
ESMFold v1 model using 3B ESM-2, 48 folding blocks.
ESMFold provides fast high accuracy atomic level structure prediction
directly from the individual sequence of a protein. ESMFold uses the ESM2
protein language model to extract meaningful representations from the
protein sequence.
"""
return _load_model("esmfold_3B_v1")
def esmfold_structure_module_only_8M():
"""
ESMFold baseline model using 8M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_8M")
def esmfold_structure_module_only_8M_270K():
"""
ESMFold baseline model using 8M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_8M_270K")
def esmfold_structure_module_only_35M():
"""
ESMFold baseline model using 35M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_35M")
def esmfold_structure_module_only_35M_270K():
"""
ESMFold baseline model using 35M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_35M_270K")
def esmfold_structure_module_only_150M():
"""
ESMFold baseline model using 150M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_150M")
def esmfold_structure_module_only_150M_270K():
"""
ESMFold baseline model using 150M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_150M_270K")
def esmfold_structure_module_only_650M():
"""
ESMFold baseline model using 650M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_650M")
def esmfold_structure_module_only_650M_270K():
"""
ESMFold baseline model using 650M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_650M_270K")
def esmfold_structure_module_only_3B():
"""
ESMFold baseline model using 3B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_3B")
def esmfold_structure_module_only_3B_270K():
"""
ESMFold baseline model using 3B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_3B_270K")
def esmfold_structure_module_only_15B():
"""
ESMFold baseline model using 15B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
The 15B parameter ESM-2 was not trained out to 500K updates
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
return _load_model("esmfold_structure_module_only_15B")