|
Adding Processors
|
|
################################################
|
|
|
|
This is a tutorial on adding new processors using ``lavis.processors`` module.
|
|
|
|
The LAVIS library includes a standard processor module that preprocesses data e.g. image transformation and sequence concatenation.
|
|
The ``lavis.processors`` module is designed such that any processors can be added, specifically to the requirements of corresponding models of interest.
|
|
In this tutorial, we will replicate the steps to add visual and textual processors specifically for `video-grounded dialogue tasks <https:
|
|
In addition, we also want the processors to have processing features to make the data samples compatible with GPT-style models.
|
|
|
|
Base Processor ``lavis.processors.base_processors``
|
|
*****************************************************
|
|
|
|
Note that any new processor definition should inherit the base processor class ``BaseProcessor``:
|
|
|
|
.. code-block:: python
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
class BaseProcessor:
|
|
def __init__(self):
|
|
self.transform = lambda x: x
|
|
return
|
|
|
|
def __call__(self, item):
|
|
return self.transform(item)
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg=None):
|
|
return cls()
|
|
|
|
def build(self, **kwargs):
|
|
cfg = OmegaConf.create(kwargs)
|
|
|
|
return self.from_config(cfg)
|
|
|
|
This allows us to standardize operations of processors across all processor classes while still allowing customization of processors specifically to data and model types.
|
|
We encourage users not to modify the implementation of the base processor class as this will have an impact on all existing processor subclasses.
|
|
|
|
GPT-style Processors ``lavis.processors.gpt_processors``
|
|
**************************************************************
|
|
In this step, we can define new processor classes, e.g. under ``lavis.processors.gpt_processors``, for GPT models designed specifically for video-grounded dialogues.
|
|
First, we want to process video features by defining ``GPTVideoFeatureProcessor`` class.
|
|
In this tutorial, we assume video features are extracted beforehand and this processor simply loads the features from ``npy`` files.
|
|
Other methods that are specifically defined are ``padding`` (which is used by dataset instances to pad multiple video samples) and ``get_attention_mask`` (which creates an attention mask for Transformer attention in GPT models).
|
|
|
|
.. code-block:: python
|
|
|
|
SPECIAL_TOKENS_DICT = {'bos_token': "<bos>", 'eos_token': "<eos>", 'additional_special_tokens': ["<speaker1>", "<speaker2>", "<video>", "<cap>"], 'pad_token': "<pad>"}
|
|
...
|
|
|
|
@registry.register_processor("gpt_video_ft")
|
|
class GPTVideoFeatureProcessor(BaseProcessor):
|
|
def __init__(self, visual_ft, audio_ft):
|
|
|
|
self.visual_ft = visual_ft
|
|
self.audio_ft = audio_ft
|
|
|
|
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
self.tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
|
|
|
|
def padding(self, seq):
|
|
padded_seq = torch.nn.utils.rnn.pad_sequence(seq, batch_first=True, padding_value=1.0)
|
|
return padded_seq
|
|
|
|
def get_attention_mask(self, seq):
|
|
return torch.sum(seq != 1, dim=2) != 0
|
|
|
|
def __call__(self, ft_root, vname):
|
|
all_ft = []
|
|
|
|
for ft_name in self.visual_ft:
|
|
ft_path = os.path.join(ft_root, ft_name, vname)
|
|
all_ft.append(np.load(ft_path + '.npy'))
|
|
|
|
for ft_name in self.audio_ft:
|
|
ft_path = os.path.join(ft_root, ft_name, vname)
|
|
all_ft.append(np.load(ft_path + '.npy'))
|
|
|
|
min_len = min([len(ft) for ft in all_ft])
|
|
|
|
sampled_ft = [ft[:min_len] for ft in all_ft]
|
|
sampled_ft = np.concatenate(sampled_ft, axis=1)
|
|
item = {}
|
|
item['video_fts'] = torch.Tensor(sampled_ft)
|
|
|
|
video_type_token = self.tokenizer.convert_tokens_to_ids('<video>')
|
|
item['token_type_ids'] = torch.Tensor([video_type_token] * len(sampled_ft)).long()
|
|
|
|
return item
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg=None):
|
|
if cfg is None:
|
|
cfg = OmegaConf.create()
|
|
|
|
visual_ft = cfg.get("visual_ft", ["i3d_rgb"])
|
|
audio_ft = cfg.get("audio_ft", ["vggish"])
|
|
|
|
return cls(
|
|
visual_ft=visual_ft,
|
|
audio_ft=audio_ft
|
|
)
|
|
|
|
Another processor class that will be useful to have is to process dialogue data. Here we can define a ``GPTDialogueProcessor`` class.
|
|
This processor class receives raw annotations and constructs inputs as a concatenation of input sequences (questions, dialogue contexts, and responses) to facilitate application in GPT models.
|
|
Other methods that are specifically defined are ``padding`` (which is used by dataset instances to pad multiple sequence samples) and ``get_attention_mask`` (which creates an attention mask for Transformer attention in GPT models).
|
|
|
|
.. code-block:: python
|
|
|
|
SPECIAL_TOKENS_DICT = {'bos_token': "<bos>", 'eos_token': "<eos>", 'additional_special_tokens': ["<speaker1>", "<speaker2>", "<video>", "<cap>"], 'pad_token': "<pad>"}
|
|
...
|
|
|
|
@registry.register_processor("gpt_dialogue")
|
|
class GPTDialogueProcessor(BaseProcessor):
|
|
def __init__(self, max_turns=3, use_caption=True):
|
|
self.max_turns = max_turns
|
|
self.use_caption = use_caption
|
|
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
self.tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
|
|
|
|
def sample_sequence(self, caption, history, answer):
|
|
bos, eos, speaker1, speaker2, cap = self.tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-2])
|
|
instance = {}
|
|
sequence = [caption] + history + [answer]
|
|
sequence = [s + [eos] for s in sequence]
|
|
|
|
instance["input_ids"] = list(chain(*sequence))
|
|
instance["token_type_ids"] = [cap] * len(sequence[0]) + [speaker2 if i % 2 else speaker1 for i, s in enumerate(sequence[1:]) for _ in s]
|
|
instance["labels"] = ([-1]*sum(len(s) for s in sequence[:-1])) + sequence[-1]
|
|
|
|
assert len(instance["input_ids"])==len(instance["token_type_ids"])
|
|
assert len(instance["token_type_ids"])==len(instance["labels"])
|
|
|
|
for k,v in instance.items():
|
|
instance[k] = torch.Tensor(v).long()
|
|
|
|
return instance
|
|
|
|
def padding(self, seq, pad_token=-1):
|
|
if pad_token==-1: pad_token = self.tokenizer.pad_token_id
|
|
padded_seq = torch.nn.utils.rnn.pad_sequence(seq, batch_first=True, padding_value=pad_token)
|
|
return padded_seq
|
|
|
|
def get_attention_mask(self, seq, pad_token=-1):
|
|
if pad_token==-1: pad_token = self.tokenizer.pad_token_id
|
|
return seq != pad_token
|
|
|
|
def __call__(self, ann):
|
|
if self.use_caption:
|
|
caption = ' '.join([ann['caption'], ann['summary']])
|
|
caption = self.tokenizer.encode(caption)
|
|
else:
|
|
caption = []
|
|
|
|
dial_history = []
|
|
for turn in ann['dialog'][-self.max_turns:]:
|
|
dial_history.append(turn['question'])
|
|
dial_history.append(turn['answer'])
|
|
dial_history.append(ann['question'])
|
|
dial_history = [self.tokenizer.encode(t) for t in dial_history]
|
|
|
|
answer = self.tokenizer.encode(ann['answer'])
|
|
|
|
item = self.sample_sequence(caption, dial_history, answer)
|
|
|
|
return item
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg=None):
|
|
if cfg is None:
|
|
cfg = OmegaConf.create()
|
|
|
|
use_caption = cfg.get("use_caption", True)
|
|
max_turns = cfg.get("max_turns", 3)
|
|
|
|
return cls(max_turns=max_turns, use_caption=use_caption)
|
|
|
|
Registering New Processors ``lavis.processors.__init__``
|
|
**************************************************************
|
|
|
|
Finally, any new processor must be officially registered as part of the ``lavis.processors`` module.
|
|
For instance, to add processor classes for GPT-based dialogue models, including one for dialogue data ``GPTDialogueProcessor`` and one for video features ``GPTVideoFeatureProcessor``, we can modify the ``__init__.py`` as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
from lavis.processors.gpt_processors import (
|
|
GPTVideoFeatureProcessor,
|
|
GPTDialogueProcessor,
|
|
)
|
|
|
|
__all__ = [
|
|
...
|
|
# GPT
|
|
"GPTVideoFeatureProcessor",
|
|
"GPTDialogueProcessor"
|
|
]
|
|
|
|
Assigning Processors
|
|
**************************************************************
|
|
From the above example of processor classes, note that we define a ``from_config`` method for each class.
|
|
This method will process a configuration file and pass specific parameters e.g. ``max_turns``, ``visual_ft``, to initialize the processor classes properly.
|
|
To do this, we can assign/ associate the correct registry of processor classes in a configuration file.
|
|
For instance, the following should be specified in a configuration file e.g. ``dialogue_avsd_ft.yaml``:
|
|
|
|
.. code-block:: yaml
|
|
|
|
datasets:
|
|
avsd_dialogue: # name of the dataset builder
|
|
vis_processor:
|
|
train:
|
|
name: "gpt_video_ft" # name of the visual processor for training data
|
|
visual_ft: ["i3d_flow", "i3d_rgb"]
|
|
audio_ft: ["vggish"]
|
|
eval:
|
|
name: "gpt_video_ft" # name of the visual processor for evaluation data
|
|
visual_ft: ["i3d_flow", "i3d_rgb"]
|
|
audio_ft: ["vggish"]
|
|
text_processor:
|
|
train:
|
|
name: "gpt_dialogue" # name of the textual processor for training data
|
|
max_turns: 3
|
|
use_caption: True
|
|
eval:
|
|
name: "gpt_dialogue" # name of the textual processor for evaluation data
|
|
max_turns: 3
|
|
use_caption: True
|
|
|
|
Subsequently, any processes (e.g. training) should load this configuration file to assign the correct processors.
|
|
|
|
.. code-block:: sh
|
|
|
|
python train.py --cfg-path dialogue_avsd_ft.yaml
|
|
|